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a b s t r a c t

In this paper, an efficient adaptive analysis procedure is proposed using the newly developed edge-

based smoothed point interpolation method (ES-PIM) for both two dimensional (2D) and three

dimensional (3D) elasticity problems. The ES-PIM works well with three-node triangular and four-

node tetrahedral meshes, is easy to be implemented for complicated geometry, and can obtain

numerical results of much better accuracy and higher convergence rate than the standard finite

element method (FEM) with the same set of meshes. All these important features make it an ideal

candidate for adaptive analysis. In the present adaptive procedure, a novel error indicator is devised for

ES-PIM settings, which evaluates the maximum difference of strain energy values among the vertexes

of each background cell. A simple h-type local refinement scheme is adopted together with a mesh

generator based on Delaunay technology. Intensive numerical studies of 2D and 3D examples indicate

that the proposed adaptive procedure can effectively capture the stress concentration and solution

singularities, carry out local refinement automatically, and hence achieve much higher convergence for

the solutions in strain energy norm compared to the general uniform refinement.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Adaptive analysis is important in the computational methods,
to achieve desired high accuracy with minimum computational
cost. In the traditional FEM, adaptive mesh refinement techniques
along with proper error analysis have been well studied [1–5],
however for meshfree methods [6–9], it is still an open topic.

The meshfree edge-based point interpolation method (ES-PIM)
[10] has been recently developed using the generalized smoothed
Galerkin (GS-Galerkin) weak form [11] with the point interpola-
tion method (PIM) for field variable approximation [12] and the
edge-based gradient smoothing operation for strain construction.
In the ES-PIM, PIM shape functions are constructed with a set of
small number of nodes located in a local support domain and
possess Kronecker Delta function property which allows straight-
forward imposition of point essential boundary conditions. The
generalized gradient smoothing technique [11] extended form the
strain smoothing operation [13] allows the use of discontinuous
functions. It can provide the so-called ‘‘softening’’ effect to the

numerical model and hence solve the overly-stiff problem existing
in a displacement-based fully compatible FEM model [11,14]. As
the theoretical basis of ES-PIM, Liu and coworkers have developed
the G space theory and the weakened weak (W2) formulation
[11,15,16] for a unified formulation of a wide class of compatible
and incompatible methods. These methods include the present
ES-PIM, the node-based smoothed point interpolation method
(NS-PIM or LC-PIM originally) which can provide upper bound
solutions in energy norm for the force driven elasticity problems
[14,17,18], the cell-based smoothed point interpolation method
(CS-PIM) which obtains highly accurate and convergent solutions
[16,46] and strain constructed point interpolation method (SC-PIM)
[47,48]. For the ES-PIM, or the edge-based smoothed finite element
method (ES-FEM) which is a special case of ES-PIM using linear
shape functions [19], the edge-based strain smoothing operation
can properly soften the model and make the numerical model
have a quite close-to-exact stiffness by even using linear triangular
elements [10,19]. Thus numerical solutions by the ES-PIM are
generally of much better accuracy, higher convergence rate and
efficiency than the standard FEM using the same mesh. Further-
more, the formulation of the ES-PIM is straightforward, the
implementation is very simple and the method works well
particularly for low-order linear elements. All these features make
the ES-PIM an excellent candidate for adaptive analyses.
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In an adaptive analysis an appropriate error indicator and
associated mesh refinement strategy are two crucial issues. In
general, two distinct types of procedures are currently available
for deriving error indicators: the recovery based error indicator
and the residual based error indicator. Zienkiewicz and Zhu [5]
firstly introduced the well-known recovery based error indicator
in 1987, which uses recovered stresses as reference solutions to
calculate the domain error in energy norm. There are some
excellent studies on this recovery methodology [20–22]. Residual
based error indicators make use of the residual of the numerical
approximation, either explicitly or implicitly, which offers a very
effective alternative [23–25].

A local mesh refinement is according to estimated error
distributions. The basic adaptive refinement schemes can be
categorized into h-refinement, p-refinement and r-refinement
[26]. The h-refinement scheme changes the size of element in a
localized fashion based on the error indicator. The p-refinement
scheme is to increase the order of the polynomial, and the r-
refinement keeps the total number of nodes unchanged but to
adjust their positions to obtain an optimal approximation. Con-
sidering the fact that the ES-PIM works particularly well with
low-order interpolation of displacement field, and the simplicity
and effectiveness of h-refinement, we use the h-refinement
scheme in the present adaptive analysis.

In the scheme of meshfree method, a number of adaptive
analysis procedures and error analysis techniques have been pro-
posed. For the element-free Galerkin (EFG) method, Rabczuk and
Belytschko [27] proposed adaptive analysis for structured meshfree
particle methods in 2D and 3D problems. Duarte and Oden [28]
derived an error indicator that involves the computation of the
interior residuals and the residuals for Neumann boundary condi-
tions for hp-cloud method. Liu and Tu [29] have introduced an
adaptive procedure for meshfree methods using an error indicator of
energy error computed via different order of sampling in Gauss
integration based on background cells. Angulo et al. [30] implemen-
ted adaptive produce of meshfree finite point method for solving
boundary value problems. An efficient adaptive RKPM for 3D contact
problems with elastic–plastic dynamic large deformation was pro-
posed by Gan et al. [31]. Zhang et al. [32] have conducted adaptive
analysis with the node-based smoothed point interpolation method
(NS-PIM or LC-PIM originally) to certify solutions with exact bounds
of strain energy for 2D problems. Then Tang et al. [33] have
extended the NS-PIM adaptive procedure to 3D problems.

In this paper, we propose an efficient error indicator and the
associated refinement scheme within the framework of the
ES-PIM and FEM for adaptive analysis for both 2D and 3D problems.
The proposed error indicator is defined based on the maximum
differences of strain energy among the vertexes associated with
each background cell. A simple h-type refinement scheme is then
implemented with an effective strategy for adding in nodes into the
regions identified by the error indicator. The automatic 2D and 3D
mesh generators based on Delaunay technology are next coded to
regenerate meshes for each step in the adaptive process. Adaptive
analysis is finally performed for a number of 2D and 3D problems,
including ones with stress concentration and singularities. The
results demonstrate that the present adaptive procedure performs
very well for the ES-PIM to obtain solutions of desired accuracy and
with bounds to the exact solution.

The layout of this paper is as follows. In Section 2, the basic
equations of ES-PIM are given. Section 3 describes the proposed
adaptive procedure, including the definition of error indicator, the
calculation of local critical value, the strategy of h-type refine-
ment and the automatic Delaunay mesh generation. In Section 4,
some numerical problems in 2D and 3D are conducted to assess
the capabilities of the proposed adaptive procedure. Conclusions
are stated in Section 5.

2. Briefing on the ES-PIM

2.1. Basic equations

Consider a solid mechanics problem in domain O bounded by
G(G¼GtþGu). The standard strong form governing equations can
be expressed by the following equations [34]:

Equilibrium equation:

LTrþb¼ 0 in O ð1Þ

where L is a differential operator in the following forms:
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rT ¼ sxx syy txy
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for 2D problems and rT ¼
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for 3D problems are the vectors

containing stress components respectively, and bT
¼ bx by

n o
and bT

¼ bx by bz

n o
are the external body force vectors for 2D

and 3D problems respectively.
Essential boundary conditions:

u¼ up on Gu ð3Þ

where uT ¼ u v
� �

and uT ¼ u v w
� �

are the displacement
vectors for 2D and 3D problems respectively, and up is the
prescribed displacements on the essential boundaries.

Natural boundary conditions:

rUn¼ tp on Gt ð4Þ

where tp is the prescribed traction on the natural boundaries, and
n is the vector of unit outward normal on Gt.

2.2. Construction of PIM shape functions

PIM shape functions are constructed using a set of small
number of nodes located in a local support domain [8]. There
are two types of PIM shape functions which have been developed
with different basis functions, i.e. polynomial basis functions
[8,12] and radial basis functions [8,35]. Details of construction
PIM shape functions can be found in the book by Liu [8]. In this
work we use both the simplest linear polynomial basis functions
and radial basis functions to construct PIM shape functions.

For the polynomial PIM, the formulations start with the
following assumption:

uðxÞ ¼
Xn

i ¼ 1

PiðxÞai ¼ PT
ðxÞa, ð5Þ

where u(x) is a field variable function defined in the Cartesian
coordinate space, Pi(x) is the basis function of monomials which is
usually built utilizing Pascal’s triangles, ai is the corresponding
coefficient, and n is the number of nodes in the local support
domain.

For the radial PIM, using radial basis functions augmented
with polynomials, a field variable function u(x) can be approxi-
mated as follows:

uðxÞ ¼
Xn

i ¼ 1

RiðxÞaiþ
Xm
j ¼ 1

PjðxÞbj ¼ RT
ðxÞaþPT

ðxÞb, ð6Þ
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