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a b s t r a c t

The paper presents a new meshless numerical technique for solving one and two-dimensional Stefan

problems. The technique presented is based on the use of the delta-shaped functions and the method of

approximate fundamental solutions (MAFS) first suggested for solving elliptic problems and heat

equations in domains with fixed boundaries. The one-dimensional problems in the plane and

cylindrical geometries are considered. The numerical examples are presented and the results are

compared with the analytical solutions. The comparison shows that the method presented provides a

very high precision in determining the position of the moving boundary even for degenerate and

singular problems when a region initially has zero thickness. The same technique was developed for 2D

Stefan problems with completely or partially unknown boundary.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Phase-change, or the Stefan problems in which material melts
or solidifies occur in a wide variety of natural and industrial
processes. Mathematically, these are special cases of moving-
boundary problems, in which the location of the front between
the solid and liquid is not known beforehand, but must be
determined as a part of the solution [1]. However, apart from a
few analytically solvable cases, there is no general solution of this
problem. Therefore, a large number of numerical methods have
been developed for this goal [2]. Amongst there are the enthalpy
method [3,4], the boundary immobilization method [5–8], the
variable space grid method [3,8], the finite element numerical
method [9], the nodal integral method [10,11]. The comparison of
various numerical methods has been made by Furzeland [12],
Caldwell et al. [2] and Javierre et al. [13].

There are two main approaches to the solution of the Stefan
problem. One is the front-tracing method, where the position of
the phase boundary is continuously tracked. Another approach is
to use a fixed-domain formulation. The enthalpy method which
uses an enthalpy function together with the temperature as a
dependent variable may serve as an example. Alternatively, one
can use a suitable coordinate transformation to immobilize the
moving front [2,8,14].

Very recently, Hon and Li [15] have applied the meshless method
of fundamental solutions (MFS), which does not require any domain
or boundary discretization, to a boundary determination problem. In
[16] this technique was applied to the one-dimensional Stefan

problems. It should be noted that [16] presents the classic version
of the MFS when the solution of the heat equation
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is approximated by a linear combination of fundamental solutions in
the form
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where H is the Heaviside function, cj are real coefficients to be
determined by imposing the initial and boundary conditions, and
the source points yj,tj are located outside the solution domain. As it
can be found in the original work, this approximation results in a
system of nonlinear equations which is solved by iterations. The
coordinates of the moving boundary position are obtained in
the framework of the same iteration procedure. The number of the
possible positions of the moving boundary is N1 ¼ 10. The move-
ment of the interface is described by its positions at 10 time
moments. The whole number of the unknowns reaches 50–90, the
typical number of iterations is 150–300.

The goal of the present paper is to describe a new meshless
numerical technique for solving problems with moving boundaries.
The technique presented is based on the use of the delta-shaped
functions [17] and the method of approximate fundamental solu-
tions (MAFS)—a modification of MFS presented in [18–20] for
elliptic problems and for heat equations in [21,22].
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Applying the finite difference scheme in time to the heat
equation (1), one gets a sequence of equations:
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when the Crank–Nicholson scheme is used. These equations are
solved one from the other beginning with the initial distribution
w0ðxÞ. From this point of view the method presented is similar to
the finite difference approach. However, contrary to FD techni-
ques we do not use any meshing in space. For this reason the
method is characterized as ‘‘meshless’’. The solution of (3) is
looked for in the form of the linear combination

wnþ1ðxÞ ¼wnþ1
p ðxÞþqnþ1

1 Cðx,x1Þþqnþ1
2 Cðx,x2Þ: ð4Þ

Here wnþ1
p ðxÞ is a particular solution of Eq. (3); the real coefficients

qnþ1
1 , qnþ1

2 are determined by imposing the boundary conditions;
the source points x1, x2 are placed outside the solution domain; the
approximate fundamental solution (AFS) Cðx,xÞ will be described
below. It is important to stress that in the framework of the method
presented all the distributions: w0ðxÞ, wnþ1

p ðxÞ, Cðx,xÞ are written in
the form of truncated Fourier series over some orthogonal system of
functions. So, the solution process consists of some manipulation
with coefficients of these expansions. To get the free parameters
qnþ1

1 , qnþ1
2 we should solve the 2�2 linear system on each time-

layer. There is no restriction to the position of the moving boundary.
This provides a fast algorithm and high accuracy in determining the
position of the moving boundary. In the paper presented a similar
technique was developed for 2D Stefan problems.

The organization of this paper is as follows. In Section 2, we
introduce briefly the MAFS technique with the use the delta shaped
functions and provide three regularization methods for the formula-
tion of the MAFS. We describe the AFSs for 1D equations in the plane
and cylindrical geometry and for 2D equation with different
boundary conditions. The main results of the paper are presented
in Section 3 where we describe the application of the MAFS to the
Stefan problems. A finite difference time stepping scheme is
employed to reduce the heat equation to a sequence of modified
Helmholtz equations. The 1D Stefan problems of two types are
considered in the first subsection. There are regular and the
degenerated Stefan problems when the solution region initially
has zero thickness. Dealing with regular Stefan problems we solve
them step by step beginning with the initial distribution w0ðxÞ and
using the AFS for representation of the solution on each time level.
The position of the moving boundary is calculated on each time
layer using the Euler scheme with correction. In the second part of
this section we consider the degenerated Stefan problems when the
solution region initially has zero thickness. Then we present the
regularizing algorithm to start the boundary movement in the
degenerate case. Next, the 1D Stefan problems in the cylindrical
geometry are considered. The MAFS algorithm for solving 2D Stefan
problems is presented in the second subsection. It is shown that the
use of AFS over different basis systems permits to satisfy the
boundary conditions on the part of the whole boundary. Finally, in
Section 4, we give the conclusion and describe the directions for the
future development of the method presented.

2. Delta shaped functions and approximate fundamental
solutions

To solve a boundary value problem (BVP)

L½w� ¼ f ðxÞ, xAX, ð5Þ

B½w� ¼ gðxÞ, xA@X ð6Þ

the method of approximate fundamental solution (MAFS) uses as
the basis functions the solutions Cðx,nÞ of the equation

L½Cðx,nÞ� ¼ Iðx,nÞ: ð7Þ

An approximate solution is looked for in the form of the linear
combination

wðxÞ �wNðxÞ ¼wpðxÞþ
XN

i ¼ 1

qiCðx,niÞ:

Here wp is a particular solution of (5); qi are free parameters
which are determined to satisfy the boundary condition (6); Iðx,nÞ
is the delta shaped function (DSF) [20,17] which essentially differs
from zero only inside some neighborhood of the source point n.
and which is analogous in some sense to Dirac’s functions dðx�nÞ.
The technique of the DSF can be described as follows.

It is well-known that the eigenfunctions

jmðxÞ ¼ sinðlmðxþ1ÞÞ, lm ¼ 0:5mp, m¼ 1;2, . . . ð8Þ

are the solutions of the following Sturm–Liouville problem on the
interval ½�1;1�:

d2

dx2
j¼�l2j, jð�1Þ ¼jð1Þ ¼ 0: ð9Þ

The eigenfunctions jnðxÞ form an orthogonal system on ½�1;1�
with the scalar product:Z 1

�1
jnðxÞjmðxÞ dx¼ dn,m ¼

0, man,

1, m¼ n:

(

Thus, Dirac’s delta function can be formally written as follows:

dðx�xÞ ¼
X1

m ¼ 1

jmðxÞjmðxÞ: ð10Þ

Note that this series diverges at any point in the interval ½�1;1�.
With various kinds of regularization techniques, a smooth delta-
shaped function, IM,gðx,xÞ, can be obtained through the formal
series expansion (10); i.e., the regularized delta-shaped functions
have the form

Ið1ÞM,gðx,xÞ ¼
XM

m ¼ 1

rmðM,gÞjmðxÞjmðxÞ: ð11Þ

Note that rmðM,gÞ are the regularization factors which can be
obtained using the following regularization techniques:

(1) The Lanczos regularization technique:

rmðM,gÞ ¼ ½smðMÞ�
g, smðMÞ ¼

sin½nðm,MÞ�

nðm,MÞ
, nðm,MÞ ¼

mp
Mþ1

:

ð12Þ

smðMÞ are called the Lanczos sigma-factors which are used to
overcome the Gibb phenomenon in the Fourier series expan-
sion of non-smooth functions [23]. This technique was
employed in [18,20–22] for solving stationary and time-
dependent problems. As it is shown in the papers listed
above, the parameters M and g should be taken in coupling.
In all the calculations presented for M¼ 30, 40, 50, 60 we use
g¼ 8, 10, 12, 14. This choice of the regularization parameter
g is found to be close to the optimal one.

(2) The Riesz regularization technique:

rmðM,gÞ ¼ 1�
l2

m

l2
Mþ1

 !g

¼ 1�
m

Mþ1

� �2
 !g

: ð13Þ

This was proposed in [18,20] for solving elliptic PDEs with
scattered data in irregular domains.
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