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a b s t r a c t 

We present a new derivation of a key formula for the rate of change of energy consump- 

tion with respect to journey time on an optimal train journey. We use a standard math- 

ematical model (Albrecht et al., 2015b; Howlett, 20 0 0; Howlett et al., 20 09; Khmelnitsky, 

20 0 0; Liu and Golovitcher, 2003) to define the problem and show by explicit calculation 

of switching points that the formula also applies for all basic control subsequences within 

the optimal strategy on appropriately chosen fixed track segments. The rate of change was 

initially derived as a known strictly decreasing function of the optimal driving speed in a 

text edited by Isayev (1987, Section 14.2, pp 259–260) using an empirical resistance func- 

tion. An elegant derivation by Liu and Golovitcher (2003, Section 3) with a general resis- 

tance function required an underlying assumption that the optimal strategy is unique and 

that the associated optimal driving speed is a strictly decreasing and continuous function 

of journey time. An earlier proof of uniqueness (Khmelnitsky, 20 0 0) showed that the opti- 

mal driving speed decreases when journey time increases. A subsequent constructive proof 

(Albrecht et al., 2013a, 2015c) used a local energy minimization principle to find optimal 

switching points and show explicitly that the optimal driving speed is a strictly decreas- 

ing and continuous function of journey time. Our new derivation of the key formula also 

uses the local energy minimization principle and depends on the following observations. 

If no speed limits are imposed the optimal strategy consists of a finite sequence of phases 

with only five permissible control modes. By considering all basic control subsequences 

and subdividing the track into suitably chosen fixed segments we show that the key for- 

mula is valid on each individual segment. The formula is extended to the entire journey by 

summation. The veracity of the formula is demonstrated with an elementary but realistic 

example. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

We consider an optimal driving strategy for a train journey between two fixed locations on a track with continuous 

gradient. For each feasible journey time the optimal driving strategy is the one which minimizes the mechanical energy 

required to drive the train. If we assume that no artificial speed limits are imposed then on track with steep gradients the 

optimal strategy is a complex switching strategy using only five permissible optimal control modes—Maximum Acceleration , 

Speedhold with Partial Acceleration at the Optimal Driving Speed , Coast , Speedhold with Partial Brake at the Optimal Regenerative 
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Braking Speed and Maximum Brake . The optimal strategy is completely determined by the optimal driving speed. See Albrecht 

et al. (2015b , 2015c ) for a comprehensive discussion. If artificial speed limits are imposed then the optimal strategy may 

include additional segments of singular control where the train follows the imposed speed limit ( Albrecht et al., 2015b; 

2015c; Khmelnitsky, 20 0 0; Liu and Golovitcher, 2003 ). Although the structure of the optimal driving strategy for a single 

train is now well understood ( Albrecht et al., 2013a; 2015b; 2015c; Howlett, 20 0 0; Howlett et al., 2009; Khmelnitsky, 2000; 

Liu and Golovitcher, 2003 ) the detailed computational techniques suggested in these seminal papers and now used for on- 

board calculation of optimal strategies in real time 1 are apparently not widely known. Indeed many papers still argue that 

real time calculations are only possible if one assumes grossly simplified driving strategies. 

In this paper we use the known structure of an optimal strategy on steep track with no speed limits to present a new 

derivation of a key formula for the rate of change in energy consumption with respect to journey time. The main argument 

is outlined in the body of the paper but the detailed derivation requires complicated mathematical manipulation of known 

formulæ directly related to the local energy minimization principle ( Albrecht et al., 2013a; 2015b; 2015c; Howlett et al., 

2009 ). For the convenience of readers these mathematical complications have been deferred to the appendices. We refer 

readers to Isayev (1987 , Section 14.2, pp 259–262) and Liu and Golovitcher (2003 , Section 3) for earlier derivations of the 

key formula. 

1.1. Main contribution 

For convenience we shall refer to the graph of mechanical energy consumption against journey time for the optimal 

driving strategy as the cost-time curve. Our main contribution is to present a new derivation of the key formula 

dJ 

dT 
= −ψ(V ) < 0 ⇐⇒ J ′ (V ) = −ψ(V ) T ′ (V ) > 0 (1) 

where V > 0 is the optimal driving speed, J = J(V ) is the mechanical energy consumption or cost and T = T (V ) is the 

time taken for the journey and to show by explicit calculation of the switching points that this relationship is preserved 

over all basic permissible control subsequences on suitably chosen fixed segments of the optimal journey. The function 

ψ(v ) = v 2 r ′ (v ) is a non-negative strictly increasing function that depends only on the resistive acceleration per unit mass 

r(v ) at speed v . The formula (1) shows that the so-called cost-time curve is strictly monotone decreasing and strictly convex . 

The optimal driving speed V uniquely determines the optimal driving strategy and although it is nominally associated with 

an optimal speedhold segment it is important to understand that on steep tracks or on short journeys there are many 

instances where the optimal strategy contains no speedhold segment. Furthermore it is well known that on tracks with 

complex gradient profiles the optimal driving strategy may involve an equally complex sequence of optimal controls and 

associated optimal switching points where the control changes. 

The simplicity of the key formula (1) may seem somewhat surprising when one considers the potential complexity of the 

optimal driving strategy. However the explanation in Liu and Golovitcher (2003 , Section 3) shows that the formula follows 

naturally from the necessary conditions for optimality provided that the optimal strategy is uniquely defined and that the 

associated optimal driving speed is a continuous and strictly decreasing function of the journey time. In this regard the 

main virtue of our new derivation is that it relates directly to the determination of optimal switching points using the local 

energy minimization principle and hence also to the constructive proof by Albrecht et al. (2013a ); 2015c ) that the optimal 

strategy is unique. 

1.2. Motivation and a related result 

Our study is motivated in the first instance by a typical train journey in which a train is required to stop at a succession 

of intermediate stations while travelling from an initial station to a final station. It is common practice to seek a driving 

strategy that minimizes the mechanical energy required to drive the train between consecutive stops subject to a prescribed 

section running time. In order to minimize energy consumption for an entire journey subject to an overall allowed journey 

time the section running times must also be chosen appropriately (Isayev, 1987, Section 14.2, pp 260–262) . Hence it is useful 

to understand that the structure of the so-called cost-time curves on each timed journey section can be used to derive the 

following auxiliary result. 

Let J i = J i (V i ) denote the cost and T i = T i (V i ) denote the duration of the optimal journey on section S i where V i is the 

optimal driving speed for each i = 1 , . . . , n . Write V = (V 1 , . . . , V n ) . We wish to minimize the total journey cost 

J(V ) = J 1 (V 1 ) + · · · + J n (V n ) 

subject to T 1 (V 1 ) + · · · + T n (V n ) ≤ T . If we set 

J (V ) = J(V ) + λ[ T 1 (V 1 ) + · · · + T n (V n ) − T ] 

then the Karush–Kuhn–Tucker (KKT) conditions show that 

J ′ i (V i ) = −λT ′ i (V i ) (2) 

1 See, for instance, the Energymiser technology at www.ttgtransportationtechnology.com . 

http://www.ttgtransportationtechnology.com
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