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a b s t r a c t

Most of the reports on the method of fundamental solutions (MFS) deal with bounded simply

connected domains; only a few involve exterior problems. For exterior problems governed by Laplace’s

equation, there exist two kinds of infinity conditions, (1) 9u9oC and (2) u¼ Oðln rÞ. For u¼ Oðln rÞ, the

traditional fundamental solutions can be used. However, for 9u9rC, new fundamental solutions are

explored. Numerical experiments are carried out to verify the theoretical analysis. The MFS and the

method of particular solutions (MPS) are classified as Trefftz methods (TM) [30] using fundamental

solutions (FS) and particular solutions (PS), respectively. The remarkable advantage of the MFS over the

MPS is the uniform FS: ln r ¼ ln9PQ 9, where P and Q are the solution and the source points, respectively.

Hence both algorithms and programming are simple. Moreover, a crack singularity in unbounded

domains (i.e., exterior problem) is also studied. A combination of the TM using both PS and FS is also

employed. The numerical results of the MPS and the combination of MFS and MPS coincide with each

other. The study in this paper may greatly extend the application of the MFS from bounded simply

connected domains to exterior domains.

& 2011 Published by Elsevier Ltd.

1. Introduction

The method of fundamental solutions (MFS) was first used in
Kupradze [16] in 1963. Since then, there have appeared numerous
reports on MFS for computation, see the reviews of the MFS in
Fairweather and Karageorghis [9], Golberg and Chen [11], and a
systemic introduction on the MFS in Chen et al. [5]. The MFS has
been applied to Cauchy and Stokes problems in [31,33], the
biharmonic equation in [8,9], and even to a nonlinear Poisson
problem [1]. Some important properties of the MFS were
addressed by Schaback [29]. To celebrate the progress of the
MFS, the first Workshop on the Method of Fundamental Solutions
(MFS2007) (see [6]), was held in Ayia Napa, Cyprus, June 11–13,
2007, and the second Workshop joined with Workshop on Trefftz
IV, was held in Kaoksiung, Taiwan, March 15–18, 2011. On the
other hand, the Trefftz method (TM) [30] has been fully developed
in theory and computation for several decades (see [25]), where
only the particular solutions (PS) are used. In fact, the MFS is a TM
using fundamental solutions (FS). In order to distinguish the two

methods, in this paper, the TM using PS is called the method of
particular solutions (MPS), as in Betcke and Trefethen [3].1 Such a
method is also called the particular solution Trefftz method in [2].
Both the MFS and the MPS belong as TM [25].

Most of the reports on the MFS deal with bounded simply
connected domains; only a few papers involve exterior problems
(e.g., [5,6,15,28,14,10,31]). For exterior problems governed by
Laplace’s equation, there exist two kinds of infinity conditions,
(1) 9u9oC and (2) u¼Oðln rÞ. Suitable fundamental solutions
must be found. For u¼ Oðln rÞ, the traditional fundamental
solutions can be used. However, for 9u9rC, new fundamental
solutions should be explored. This is the first goal of this paper.
Since the method of fundamental solutions (MFS) can be classi-
fied as a Trefftz method (TM) using fundamental solutions (FS).
Then we may follow [25] to obtain the error analysis of the MFS.
The remarkable advantage of the MFS over the MPS is the uniform
FS: ln r¼ ln9PQ 9, where P and Q are the solution and the source
points, respectively. Hence both algorithms and programming are
simple. The MFS may satisfy the engineering requirements by
much less computational efforts. The second goal is to study a
challenging model: a crack singularity problem in an unbounded
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domain (i.e., exterior problem) is studied. A combination of the PS
and FS is also employed. The numerical results of the MPS and the
combination of MFS and MPS are coincident with each other. The
study in this paper may greatly facilitate the application of
the MFS from bounded simply connected domains to exterior
domains.

In this paper, we focus on unbounded domains, and discuss
both smooth and singularity problems. In Section 2, the Trefftz
method is described for Laplace’s equation. When the fundamen-
tal solutions and the particular solutions are used in the TM, we
obtain the MFS and the MPS, respectively. In Section 3, for the
exterior problem with smooth solutions, new fundamental solu-
tions satisfying the infinity condition 9u9oC as r-1 are
explored. In Section 4, the crack singularity problem in
unbounded domains is solved by the MPS and the combination
of MFS and MPS, where the infinity condition is u¼Oðln rÞ
as r-1.

2. The Trefftz method

Consider the exterior problem in 2D,

Du¼
@2u

@x2
þ
@2u

@y2
¼ 0 on S1, ð2:1Þ

u¼ f on GD
in, ð2:2Þ

un ¼
@u

@n ¼ g in GN
in, ð2:3Þ

9u9rC or u¼ Oðln rÞ as r-1, ð2:4Þ

where S1 is the exterior domain with the interior boundary

Gin ¼GD
in [ G

N
in, ð2:5Þ

n is the exterior normal to GN
in, and f and g are smooth functions.

The infinity condition as u¼Oðln rÞ for r-1 is given in McLean
[28], resulting from some boundary integral equations, see also
Section 4.

We choose the harmonic functions fi (e.g., Dfi ¼ 0) as basis
functions, and form a linear combination,

uN ¼
XN

i ¼ 1

cifi, ð2:6Þ

where ci are the coefficients to be determined by (2.2)– (2.4). Note
that the admissible functions uN chosen in (2.6) must satisfy the
infinity conditions. We may invoke the Trefftz method (TM),
which reads: To seek uN such that

IðuNÞ ¼min
vAVN

IðvÞ, ð2:7Þ

where VN denotes the set of (2.6) satisfying (2.4), the integrals

IðvÞ ¼

Z
GD

in

ðv�f Þ2þw2

Z
GN

in

ðvn�gÞ2, ð2:8Þ

and w is the weight. In computations, we may choose

w¼
1

N
, ð2:9Þ

based on the analysis in [18]. Eq. (2.8) reflects (2.2) and (2.3) only;
the condition (2.4) at infinity confines that the functions uN are
bounded in S1, or Oðln rÞ as r-1.

When the integrals in (2.8) involve numerical approximation,
the TM reads: To seek ~uN such that

bIð ~uNÞ ¼min
vAVN

bIðvÞ, ð2:10Þ

where

bIðvÞ ¼cZ
GD

in

ðv�f Þ2þw2
cZ

GN
in

ðvn�gÞ2, ð2:11Þ

and bR
GD

in
and bR

GN
in

of
R
GD

in
and

R
GN

in
are evaluated numerically,

respectively. On the other hand, we may formulate the collocation
equations, directly from (2.2) and (2.3):

XN

i ¼ 1

cifiðPjÞ ¼ f ðPjÞ, PjAGD
in, ð2:12Þ

XN

i ¼ 1

ci
@

@nfiðPjÞ ¼ gðPjÞ, PjAGN
in: ð2:13Þ

Let GD
in and GN

in be divided into small sections with a meshspacing
Dhj, and denote their mid-points by Pj. We rewrite (2.12) and
(2.13) with the weights

ffiffiffiffiffiffiffiffi
Dhj

q
and w

ffiffiffiffiffiffiffiffi
Dhj

q
, to giveffiffiffiffiffiffiffiffi

Dhj

q XN

i ¼ 1

cifiðPjÞ ¼

ffiffiffiffiffiffiffiffi
Dhj

q
f ðPjÞ, PjAGD

in, ð2:14Þ

w
ffiffiffiffiffiffiffiffi
Dhj

q XN

i ¼ 1

ci
@

@nfiðPjÞ ¼w
ffiffiffiffiffiffiffiffi
Dhj

q
gðPjÞ, PjAGN

in: ð2:15Þ

Eqs. (2.14) and (2.15) are just (2.10) and (2.11), evaluated by the
central rule. We may also obtain the collocation equations by the
Gaussian rule. Note that when the fundamental solutions (FS) and
the particular solutions (PS) are chosen as the harmonic functions
fi in (2.6), the method of fundamental solutions (MFS) and the
method of particular solutions (MPS) are obtained, respectively.

In computation, we always choose the number M of colloca-
tion nodes larger than N. Eqs. (2.14) and (2.15) form an over-
determined system,

Fx¼ b, ð2:16Þ

where FARM�NðMZNÞ, xARN and bARM . The traditional condi-
tion number is given by

Cond¼
smax

smin
, ð2:17Þ

where smax and smin are the maximal and the minimal singular
values of the matrix F, respectively. The effective condition
number is defined in [21,22]

Cond_eff ¼
JbJ

sminJxJ
, ð2:18Þ

where JxJ is the Euclidean norm. The values of Cond_eff are
smaller (or even much smaller) than those of Cond (see [21,22]).

In (2.16), we choose the over-determined system of linear
algebraic equations, to earn a flexibility of the TM, and to reach a
better accuracy of the leading coefficients by the MPS. For Motz’s
problem, the most accurate leading coefficients within rounding
errors can be achieved by some over-determined system, see [25].

3. Smooth model

We choose the epitrochoid boundary shape Gin from Liu [27],

rðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbÞ2þ1�2ðaþbÞcos

ay
b

� �s
, ð3:1Þ

where x¼ r cos y and y¼ r sin y. In our computation, choose a¼3
and b¼1 (see Fig. 1). Denote

rmax ¼max
Gin

r¼ 5, rmin ¼min
Gin

r¼ 3: ð3:2Þ
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