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a b s t r a c t

Detailed characterization of linear elastic stress states at corners and crack tips requires knowledge of

the stress singularity orders, the characteristic angular functions and the generalized stress intensity

factors (GSIF). Typically a high accuracy is found in the literature for the evaluation of the stress

singularity orders and characteristic angular functions (numerically computed from analytical expres-

sions in most cases). Nevertheless, GSIF values, evaluated by means of a numerical model using FEM or

BEM and usually by postprocessing the results, are often reported with a lower level of confidence.

A robust procedure is presented in this work for the evaluation of the GSIF at multimaterial corners. The

procedure is based on a simple least squares technique involving stresses and/or displacements,

computed by BEM, at the neighborhood of the corner tip. A careful verification of the robustness and

accuracy of the procedure using a few benchmark problems in the literature has been carried out.

Applications of the procedure developed to the evaluation of GSIFs appearing at corners in metal-

composite adhesive lap joints are presented.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Problems having abrupt changes in geometry and/or material
properties at some singular points solved under the assumptions
of linear elasticity present unbounded stresses (referred to as
stress singularities), see [1–8]. Neighborhood of such a point is
usually referred to as corner, multimaterial corner if several
materials meet at this point or also cross points if the singular
point is located inside the domain. If the conditions for small
scale yielding apply, the obtained singular elastic solution at a
certain distance to the corner tip is representative of the real
stress state. In this case, the linear elastic solution using a polar
coordinate system (r,y) centered at the corner tip, see Fig. 1,
admits, with the exception of some degenerate cases, a repre-
sentation for the stresses sij and displacements ui by the follow-
ing asymptotic series expansion, see [9–12] for a rigorous
mathematical justification, for r-0þ:
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in which lm are the singularity exponents, f m
ij ðyÞ and gm

i ðyÞ
are, respectively, the characteristic angular functions for stresses

and displacements, and Km, the weights of the terms, are the
so-called Generalized Stress Intensity Factors (GSIF). Thus, the
set of Km (m¼1, y, M) defines the local elastic state at a
corner. Notice that each term in (1) represents a solution of the
governing partial differential equations in the corner domain. We
will refer to each term as a mode similar to that used in the case
of cracks. It is assumed that lm are naturally ordered fulfilling
RelmrRelmþ1. Logarithmic terms have not been considered in
this work for the sake of brevity; see Sinclair [13] for further
information. However, the procedure for the evaluation of GSIFs
presented here may be easily generalized to include these
logarithmic terms.

When a l is a complex number, as in the case of interface
cracks, l¼lRþ ilI (where lR and lI are real numbers), the
associated GSIF is also a complex number K¼KRþ iKI (where KR

and KI are real numbers). In such a case, two terms can be
included in (1). In the representation of the stresses, one term
would be equal to KRRe½rl�1f ijðyÞ� and the other would be
KIIm½rl�1f ijðyÞ�, while in the representation of the displacements,
one term would be equal to KRRe½rlgiðyÞ� and the other
KIIm½rlgiðyÞ�.

The characteristic angular functions f m
ij ðyÞ and gm

i ðyÞ together
with the singularity exponents lm depend only on the local
geometry, local material properties and the type of local boundary
conditions. The GSIFs, Km, in addition depend on the global
geometry, material properties and prescribed boundary condi-
tions, their values being proportional to the magnitude of bound-
ary conditions for linear elastic solutions.
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The rigid body motions are included in (1) for lm¼0 (transla-
tions) and lm¼1 (rotations) with the appropriate definition of gm

i

and the corresponding f m
ij ¼ 0. Note that Relm40 for the other

modes in (1).
The terms in (1) with Redm40, where dm¼1–lm, thus

0oRelmo1, are called singular, giving rise to unbounded stres-
ses as r-0þ . In this case, dm are referred to as the stress
singularity orders.

Failure predictions at these corner-points admit several
approaches, most of them being based either on allowable values
of these GSIFs or on allowable values of field variables evaluated
by means of the local stress or strain fields governed by the GSIFs.
The evaluation of these GSIFs is then of crucial importance. For
the evaluation of the GSIFs, the global geometry and far field
loading must be considered. Thus, in general, numerical models
by means of Finite Element Method (FEM) or Boundary Element
Method (BEM) or experimental tests (e.g. using photoelasticity)
have to be used. Techniques for the evaluation of GSIFs can be
roughly divided into four basic groups, according to the local/
global character of the procedure and to the necessity, or other-
wise, of postprocessing of the FEM or BEM analysis results.

Local techniques are sensitive to the accuracy of the numerical
solution values for stresses and/or displacements close to the
corner tip, while global techniques, working also, or only, with the
elastic solution far from the corner tip, typically by making use of
conservative integrals, are thus less sensitive to the solution
accuracy at the corner tip. Regarding the second criterion for
the classification, those techniques using postprocessing of basic
field variables do not need to be incorporated into the numerical
codes (FEM, BEM), but do not typically have as good accuracy as
the methods which directly incorporate the singularity shape
functions into the discretization, usually requiring a modification
of the numerical code.

Some references belonging to these groups are included in
Table 1, which do not aim to be an exhaustive review. Further
information can be found in Helsing and Jonsson [25], Sinclair
[6,7] and Paggi and Carpinteri [8]. Particular examples of GSIF

evaluation involving materials having non-isotropic constitutive laws
can be found in Quaresimin and Ricotta [26], Nomura et al. [27]
using the H-integral and including thermal stresses, or the interac-
tion integral by Cisilino and Ortiz [28].

Typically, high accuracy can be found in the literature regard-
ing the evaluation of singularity exponents lm and characteristic
functions f m

ij ðyÞ and gm
i ðyÞ in (1), see Wieghardt [1], Williams [2]

and Vasilopoulos [3] for single isotropic corners, Dempsey and
Sinclair [4,5] for multimaterial isotropic corners, Mantič et al. [29]
for single orthotropic corners, Pageau et al. [30] for single
anisotropic corners, Mantič et al. [31] for multimaterial anisotropic
antiplane corners, Ting [32], Barroso et al. [33], Hwu et al. [34] and
Yin [35] for multimaterial anisotropic corners, which can be
computed by finding the roots of an analytical function. However,
the accuracy in the evaluation of GSIFs is substantially worse as
numerical models of the global elastic problem and postproces-
sing of the results are needed. Reliable and accurate results for
benchmark problems which could be used as reference values in
new evaluation methods are needed. Some interesting comments
regarding the validity of the published numerical results in the
literature can be found in Helsing and Jonsson [36].

The approach proposed and explored in this paper is aimed at
being an accurate and easy-to-use procedure for the evaluation of
GSIFs. It can be located in the above classification in the first row
(see Table 1), with no need to modify the FEM or BEM code
applied, and between the two columns, as both near and far field
data of the analysis results can be used. It should be noted that no
special need for an accurate solution from the FEM or BEM
analysis step in the neighborhood of the corner tip is required,
and it has a certain robustness with the use of the far-field data
(far from the corner tip).

The paper is divided into five main sections. Section 2 deals
with the description of the basic features of the Boundary
Element code (BEM) applied, Parı́s and Cañas [37] and Graciani
et al. [38], used for the numerical models in this work. Section 3
describes the postprocessing procedure for the evaluation of
GSIFs, which is based on a least squares method in terms of the
displacements and/or stresses using the results obtained along
the boundary edges of the corner and also the common edges
between material wedges in the case of a multimaterial corner.
The proposed postprocessing procedure for evaluation of GSIFs Km

(m¼1, y, M) is particularly well suited for numerical solutions
arising from BEM models as the displacements and stress vector
are the basic field variables used in the procedure. Nevertheless,
no limitation appears in using the numerical solutions obtained
by FEM models. Difficulties with the possible ill-conditioning of
the resulting linear system are also analyzed in this section.
Section 4 is devoted to the evaluation of the implemented
procedure by means of the well-known benchmark problems
from the literature, performing parametric analyses to check the
accuracy and robustness of the procedure. Section 5 applies the
procedure for the evaluation of GSIFs in configurations of multi-
material corners appearing in adhesively bonded double-lap
joints between aluminum and carbon fiber laminates. A final
section summarizes the main features of the work.

2. Multidomain BEM code

The present study involves the numerical analysis of 2D plane
elasticity problems including one or multiple materials, with isotropic
or orthotropic behaviors, in which singular stresses are present.

Two-dimensional BEM is employed in its traditional colloca-
tion formulation using continuous linear elements to mesh the
boundaries of the problem in the so-called displacement Bound-
ary Integral Equation (BIE).
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Fig. 1. Multimaterial corner.

Table 1
Classification of procedures for GSIF evaluation.

Procedure Local techniques Global

techniques

Evaluation of GSIFs using

postprocessing of

numerical (FEM, BEM)

results

Based, e.g., on least squares

fitting [14–17]

Based, e.g., on

conservative

integrals [18–20]

Incorporation of singularity

shape functions in the

problem discretization

Quarter point elements

[21–23] and other

singularity elements [24]

Functions in the

whole domain

([25] and [58]
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