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a b s t r a c t

As arrangements, the fundamental solutions of anisotropic convective diffusion equations of transient

incompressible viscous fluid flow and boundary elements analysis of the diffusion equation are

presented. Secondly, by considering that convective diffusion equations and Navier–Stokes equations

are mathematical formulations of mass and momentum conservation law respectively, and that

consequently, both physical contents and equation styles are analogous, boundary integral formula-

tions for Navier–Stokes equations are proposed on the basis of formulation of diffusion equations.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In general, a Green’s function or principal solution (fundamental
solution) plays an important role in the conversion of equations
into integral equations. The Navier–Stokes equation (hereinafter,
abbreviated as N–S equation) is a non-linear equation. Conven-
tional fundamental solutions are structured in such a way that they
are intended only for linear operations of equations. Accordingly,
the equation is handled in a manner similar to the Stokes
approximation, which is known as a linear approximation of the
N–S equation, or the Oseen approximation, with many researches
utilizing this technique [1–3]. These linearizations are useful for
cases where the Reynolds number is extremely small, but their
application for general flow in rivers and oceans may be considered
to be limited.

This research consists of three steps. In Step 1, velocity
components, which are coefficients comprising three-dimen-
sional transient anisotropic convective diffusion equations, are
considered to be temporarily given. As a result, fundamental
solutions for linear equations are derived. In Step 2, this funda-
mental solution is used to establish the boundary element
method of the convective diffusion equation. It is a well-known
fact that convective diffusion equations are mathematical for-
mulae of the law of conservation of mass, while N–S equations are
formulae of the law of conservation of momentum, with analo-
gous physical contents and style of equation. An observation is

made on the aforementioned characteristics in Step 3 to establish
the solving method of BEM for the N–S equation based on the
results obtained in Steps 1 and 2.

2. Fundamental solution for convective diffusion equations
(Step 1)

A three-dimensional transient anisotropic convective diffusion
equation is provided by the following equation:

@c

@t
þuic,i ¼Dic,ii�lcþF ð1Þ

A tensor syntax and sum rule are adopted with a sum of 1,
2 and 3 represented by suffixes in cases where there are multiple
identical lower suffixes. Variable t represents time and c repre-
sents concentration, while u1,u2 and u3 represent components of
flow velocity and D1,D2 and D3 represent the diffusion coeffi-
cients in the x1,x2 and x3 directions respectively. l represents the
dissipation rate of mass, while F represents the load term. Suffix
ðÞ,i represents differentiation in the direction i, while ðÞ,ii repre-
sents multiple differentiation in the direction i.

Operator L½ � is defined as shown in the following equation:

L½c� ¼
@c

@t
þuic,iþlc�Dic,ii ð2Þ

The adjoint differential operator of L½ � is defined as Lþ ½ � and the
adjoint unknown quantity of c is defined as cn thus, we obtain the
following equation:

Lþ ½cn� ¼ �
@cn

@t
�uic

n,iþlcn�Dic
n,ii ð3Þ
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Based on this definition, Eq. (1) can be written as

L½c� ¼ F ð4Þ

Next, the solution (fundamental solution) of the following
equation, cn is searched after

Lþ ½cn� ¼ dðx1�b1Þdðx2�b2Þdðx3�b3Þdðt�tÞ ð5Þ

In this equation, d represents the Dirac delta function, while
xiði¼ 1;2,3Þ and t represent the coordinates of the review point
and time, respectively, with biði¼ 1;2,3Þ and t representing the
load point and time, respectively. The solutions of Eq. (5) are
obtained already under the assumption that D1 ¼D2 ¼D3, velo-
city components u1,u2 and u3 are temporarily and spatially con-
stant [4]. In this paper, the solutions of Eq. (5) are obtained under
the assumption that D1aD2aD3.

ujðj¼ 1;2,3Þ and cn are both unknown values, and although Eq.
(5) is a non-linear partial differential equation, ujðj¼ 1;2,3Þ is
temporarily considered to be a known quantity (by providing the
flow velocity value for time level t) to linearize the equation (in
actual calculation, ujðj¼ 1;2,3Þ is first calculated in Dt steps
according to a method described in Step 3, and then, the result
is utilized as basic data to implement this diffusion calculation).

The following equation is obtained by performing quadruple
Fourier transformation on the above linearized equation with
respect to xiði¼ 1;2,3Þ, and t:

ĉ
n
f�iðxtþujxjÞþlþDjxjxjg ¼ e�ixjbj�ixtt ð6Þ

where i¼
ffiffiffiffiffiffiffi
�1
p

and ĉ
n

are conversions of unknown quantities,
while x1,x2,x3, and xt are conversion variables for x1,x2,x3, and t

respectively.
The following equation is obtained by solving the above

equation for ĉ
n
:

ĉ
n
¼

1

�ixtþo
e�ixjbj�ixtt ð7Þ

where

o¼�iujxjþlþDjxjxj ð8Þ

Next, by performing quadruple Fourier inverse transformation,
we obtain

cn ¼
1

ð2pÞ4

ZZZþ1
�1

eixjrj dx1 dx2 dx3

Z þ1
�1

eixt ðt�tÞ

�ixtþo
dxt ð9Þ

where rj ¼ xj�bj ðj¼ 1;2,3Þ.
First, the integral for the integration variable xt is searched

after

I¼

Z þ1
�1

eixt ðt�tÞ

�ixtþo
dxt ð10Þ

Next, a simple closed curve on a complex plane is assumed for
considering the next complex integral

In ¼

I
eizm

�izþodz ð11Þ

where z is a complex number, m¼ t�t.
The singular point of In is z¼�io, using which residue A can

be written as A¼ ieom. Accordingly, based on the theory of
integration we obtain

In ¼ 2piA¼�2peom ð12Þ

On the other hand, if the complex plane is defined as z¼ xþ iZ,
as shown in Fig. 1, then izm¼ ixm�Zm; hence, for the integral In

to exist, we must have Zm40. This occurs in two cases: (1)
m40, Z40; (2) mo0, Zo0.

BADB
���!

and ABCA
���!

can be considered as a closed curve that
includes real-number axes AB, which are equivalent to cases
(1) and (2), respectively.

When considering Eq. (8), the singular point exists in the
closed curve ABCA as shown in Fig. 1:

z¼�io¼�ujxj�iðlþDjxjxjÞ

Accordingly, the integral values for cases (1) and (2), respec-
tively, are

In ¼ 0, In ¼�2peom

Therefore, to ensure that integral In is not 0, we must have
m¼ t�to0. This is merely a natural outcome; because Eq. (5) is
fundamentally an expression of diffusion in the reverse direction,
i.e., diffusion into the past.

By setting mo0, we obtain

In ¼

Z
ABCA
¼

Z
AB
þ

Z
BCA
¼�2peom ð13Þ

By setting g-1 in Fig. 1 and by applying the theory of Jordan,
we obtainZ

BCA
¼ 0,

Z
AB
¼�2peom, I¼

Z
BA
¼�

Z
AB
¼ 2peom ð14Þ

Accordingly, we obtain

I¼
2peom, mo0

0, m40
� 2pHð�mÞeom

(
ð15Þ

where Hð�mÞ is a Heaviside step function.
By substituting Eq. (15) in Eq. (9), we obtain

cn ¼
Hð�mÞ

ð2pÞ3

ZZZ þ1
�1

eixjrj emo dx1 dx2 dx3 ð16Þ

By substituting o of Eq. (8) in the above equation, we obtain

cn ¼
emlHð�mÞ

ð2pÞ3
Y3

j ¼ 1

Z þ1
�1

eixjrj�imujxjþmDjxjxj dxj ¼
emlHð�mÞ

ð2pÞ3
f 1f 2f 3

ð17Þ

Here, we decide that the sum rule does not apply to the above
equation only. f 1, f 2 and f3 are each calculated separately:

f 1 ¼

Z þ1
�1

eiðr1�mu1Þx1þmD1x
2
1 dx1 ð18Þ

By introducing f2
¼�mD140, c¼ r1�mu1, and x¼ x1 to the

above equation, we obtain

f 1 ¼

Z þ1
�1

e�f
2x2þ icx dx¼

Z þ1
�1

e�f
2x2

cos cx dxþ i

Z þ1
�1

e�f
2x2

sin cx dx

ð19Þ

The first and second terms on the right side of Eq. (19) are defined
as g1 and g2, respectively:

g1 ¼

Z þ1
�1

e�f
2x2

cos cx dx¼ 2

Z þ1
0

e�f
2x2

cos cx dx

Fig. 1. Integral path on a complex plane.
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