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a b s t r a c t

In this paper, the boundary errors are defined for the null-field method (NFM) to explore the

convergence rates, and the condition numbers are derived for simple cases to explore numerical

stability. The optimal convergence (or exponential) rates are discovered numerically. This paper is

also devoted to seek better choice of locations for the field nodes of the fundamental solutions

(FS) expansions. It is found that the location of field nodes Q does not affect much on convergence

rates, but do have influence on stability. Let d denote the distance of Q to @S. The larger d is chosen,

the worse the instability of the NFM occurs. As a result, d¼ 0 (i.e., Q A@S) is the best for

stability. However, when d40, the errors are slightly smaller. Therefore, small d is a favorable choice

for both high accuracy and good stability. This new discovery enhances the proper application of

the NFM.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

For circular domains with circular holes, there exist a number
of papers of boundary methods. In Babone and Caulk [6,7] and
Caulk [10] the Fourier functions are used for the circular holes for
boundary integral equations; and in Bird and Steele [8] the simple
algorithms as the collocation Trefftz method as in [33] are used.
In Ang and Kang [2], complex boundary elements are studied.
Recently, Chen and his research group have developed the null-filed
method (NFM), in which, the field nodes Q are located outside of
the solution domain S, and the fundamental solutions (FS) can be
expanded as the convergent series. The Fourier functions are also
used to approximate the known or unknown Dirichlet and Neumann
boundary data, numerous papers have been published for different
physical problems. Since explicit algorithms, errors, and stability for
Laplace’s equation are our main concern, we only cite [15,16,18]. For
the boundary integral equation (BIE) of the first kind, the trigono-
metric functions are used in Arnold [3,4], and error analysis is made
for infinite smooth solutions, to derive the exponential convergence
rates. In Cheng’s Dissertation [21,22], for BIE of the first kind, the
field nodes are located outside of the solution domain, the linear

combination of fundamental solutions are used, and error analysis is
made only for circular domains.

In this paper, the boundary errors are defined for the NFM to
explore the convergence rates, and the condition numbers are
derived for simple cases to explore numerical stability. The optimal
convergence (or exponential) rates are discovered numerically, and
a strict error analysis will be reported in a subsequent paper. This
paper is also devoted to seek better choice of locations for the field
nodes of the FS expansions. In this paper, we apply the indirect BEM
with retracted boundary, while in [19], MFS with discrete source
nodes are used. It is found that the location of Q does not affect
much on convergence rates, but do have influence on stability. Let d
denote the distance of Q to @S. The larger the d is chosen, the worse
the instability of the NFM occurs. As a result, d¼ 0 is the best for
stability. However, when d40, the errors are slightly smaller.
Therefore, small d is a better choice for both high accuracy and
good stability. This new discovery enhances proper applications of
the NFM.

This paper is organized as follows. In the next section, the
explicit discrete equations and the analytic solutions of the NFM
are derived, and choices of field points in the FS expansions are
investigated. In Section 3, stability analysis is made for a simple
case of circular boundaries with the same origin. A strict proof is
provided for the field nodes located on the solution boundary @S.
In Section 4, numerical experiments are carried out for a model
problem of Dirichlet problems of Laplace’s equation, and better
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choices of field nodes are found numerically. In the last section,
a few concluding remarks are addressed.

2. Explicit algorithms of null field methods

2.1. Basic algorithms

The series expansions1 of fundamental solutions (FS) are
important to the error analysis of the method of fundamental
solutions, and the null-field method (NFM), which is developed by
Chen and his colleagues for circular domain with circular holes
[15,16,18]. Such special domains can be found in many engineer-
ing problems. In order to simply describe the NFM, we confine
ourselves Laplace’s equation and choose the circular domain with
one circular hole. Denote the disks SR and SR1

with radii R and R1,
respectively. Then SR1

� SR, and the eccentric circular domains SR

and SR1
may have different origins. Let 2R1oR. The annular solution

domain S¼ SR\SR1
with the exterior and the interior boundaries @SR

and @SR1
, respectively. In [18], R¼2.5 and R1 ¼ 1 and the origins of SR

and SR1
are located at ð0;0Þ and ð�R1,0Þ, respectively. The following

Dirichlet problems are discussed by Palaniappan [35],

Du¼
@2u

@x2
þ
@2u

@y2
¼ 0 in S, ð2:1Þ

u¼ 1 on @SR, u¼ 0 on @SR1
: ð2:2Þ

The true solution of (2.1) and (2.2) is found as [18,35]

uðr,fÞ ¼
1

2 ln 2
ln

16r2þ1þ8r cos f
r2þ16þ8r cos f

� �
, ð2:3Þ

where ðr,fÞ are the polar coordinates of SR1
with the origin (�1,0).

Eqs. (2.1)–(2.3) are called Model problem in this paper.
On the exterior boundary @SR, there exist the approximations

of Fourier expansions,

u¼ u0 :¼ a0þ
XM
k ¼ 1

fak cos kyþbk sin kyg on @SR, ð2:4Þ

@u

@n ¼ q0 :¼ p0þ
XM
k ¼ 1

fpk cos kyþqk sin kyg on @SR, ð2:5Þ

where ak,bk,pk and qk are coefficients. On the interior boundary
@SR1

, similarly

u ¼ u0 :¼ a0þ
XN

k ¼ 1

fak cos kyþbk sin kyg on @SR1
, ð2:6Þ

@u

@n ¼�
@u

@r
¼ q0 :¼ p0þ

XN

k ¼ 1

fpk cos kyþqk sin kyg on @SR1
, ð2:7Þ

where ak,bk,pk and qk are coefficients. In (2.4)–(2.7), y and y are
the polar coordinates of SR and SR1

with the origins (0,0) and
ð�R1,0Þ, respectively, and n and n are the outer normal of @SR and
@SR1

respectively. For the Dirichlet, the Neumann conditions and
their mixed types on @SR are given with the known coefficients.

In S, denote two nodes x¼Q ¼ ðx,yÞ ¼ ðr,yÞ, and y¼ P¼ ðx,ZÞ ¼
ðr,fÞ, where x¼ r cos y,y¼ r sin y,x¼ r cos f, and Z¼ r sin f.

Then r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
and r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
þZ2

q
. The FS of Laplace’s equation

is given by ln PQ ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�2rr cosðy�fÞþr2

p
. From the BEM

theory, we have different formulas for different locations of the

field nodes Q ðxÞ:

Z
@S

ln9PQ9
@uðyÞ

@n �uðyÞ
@ ln9PQ9

@n

� �
dsy ¼

�2puðQ Þ, Q AS,

�puðQ Þ, Q A@S,

0 otherwise,

8><
>:

ð2:8Þ

where PðyÞAðS [ @SÞ, and the series expansions of the FS ln9PQ9
are given by (see [1,25,29,31])

ln 9PQ9¼ ln9PðyÞ�Q ðxÞ9¼ ln9Pðr,fÞ�Q ðr,yÞ9

¼

Uiðx,yÞ ¼ ln r�
X1
n ¼ 1

1

n

r
r

� �n

cos nðy�fÞ, ror,

Ueðx,yÞ ¼ ln r�
X1
n ¼ 1

1

n

r

r

� �n

cos nðy�fÞ, r4r,

8>>>><
>>>>:

ð2:9Þ

where x¼ ðr,yÞ and y¼ ðr,fÞ. Then we have two kinds of deriva-
tive expansions of FS,

@Uiðx,yÞ

@r
¼

1

r
þ
X1
n ¼ 1

rn

rnþ1

� �
cos nðy�fÞ, ror, ð2:10Þ

@Ueðx,yÞ

@r
¼�

X1
n ¼ 1

rn�1

rn

� �
cos nðy�fÞ, r4r, ð2:11Þ

where the superscripts ‘‘e’’ and ‘‘i’’ designate the exterior and
interior field nodes x, respectively.

To distinguish the boundary element method (BEM) which is
based on the second equation of the Green formula (2.8), the NFM is
based on the third equation by using the FS expansions, we haveZ
@SR[@SR1

Uðx,yÞ
@uðyÞ

@n
dsy ¼

Z
@SR[@SR1

uðyÞ
@Uðx,yÞ

@n
dsy , xAS

c
,

ð2:12Þ

where S
c

is the complementary domain of S [ @S. Substituting
the Fourier expansions (2.9)–(2.11) into (2.12) yields the basic
algorithms of NFM, where the exterior normal of @SR1

is given by
@Uðx,yÞ=@n¼�@Uðx,yÞ=@r. Although the basic descriptions above
have been used in Chen’s many papers, there exist no explicit
equations reported so far. The explicit equations are important not
only to understand the intrinsic nature of the NFM, but also to
extend their applications. The first goal of this paper is to develop
the explicit algebraic equations of the NFM.

In the Green formula (2.12), the field node x¼ ðr,yÞ is sup-
posed to locate outside of the solution domain S [ @S only; this is
why the algorithms of Chen is called the null field method (NFM).
The first question arises: Can we locate the field node just on the
domain boundary: xA@S? If yes, a puzzle is encountered since
xA@S is not allowed in the first and the third equations on the
right hand side of (2.8). Moreover, how to find a better choice of
location of x? To this end, we should choose suitable criteria to
judge x’s location. The most important criteria are errors and
stability. Therefore, in this paper, important boundary errors are
defined, the condition number and the effective condition number
in [30] are chosen for illustrating of stability.

2.2. Explicit algebraic equations

First, consider the exterior field nodes x¼ ðr,yÞ with r4r¼ R.
On @SR, by substituting (2.4)–(2.5) and (2.9)–(2.11) into (2.12), we
have from orthogonality of Fourier series,

Z
@SR

uðyÞ
@Ueðx,yÞ

@n
dsy ¼

Z 2p

0
a0þ

XM
k ¼ 1

½ak cos kfþbk sin kf�

( )

� �
X1
n ¼ 1

Rn�1

rn

� �
cos nðy�fÞ

( )
R df1 The series expansions of FS is called the degenerate kernel of FS in Chen’s

publications.
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