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The Kalman filter is a common state of charge estimation algorithm for lithium-ion cells. Since its first
introduction in the application of lithium-ion cells, different implementations of Kalman filters were
presented in literature.

However, due to non-uniform validation methods and filter tuning parameters, the performance of
different Kalman filters is difficult to quantify. On this account, we compare 18 different implementa-
tions of Kalman filters with an enhanced validation method developed in our previous work. The
algorithms are tested during a low-dynamic, high-dynamic and a long-term current load profile at
—10°C, 0°C, 10°C, 25 °C and 40 °C with a fixed set of filter tuning values. To ensure comparability, a
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Lithium-ion quantitative rating technique is used for estimation accuracy, transient behaviour, drift, failure stability,
State of charge temperature stability and residual charge estimation.
Benchmark The benchmark shows a similar estimation accuracy of all filters with an one and two RC term

Filter tuning equivalent circuit model. Furthermore, a strong dependency on temperature during high-dynamic loads
is observed. To evaluate the importance of the tuning parameters, the temperature dependency is

reduced with an individual filter tuning. It is reasoned, that not only the filter type is significant for the

estimation performance, but the filter tuning.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For lithium-ion cells several state of charge (SOC) estimation
algorithms are presented in literature. One of the most common
algorithms is the Kalman filter (KF). The KF was invented by
Rudolph Kalman [1] in 1960 and originally used to estimate
trajectories for manned and unmanned spacecrafts. In 2004, Plett
[2-4] introduced a method to use the KF for SOC estimation of
lithium-ion cells. This method was commonly adapted in later
works, resulting in various implementations of state estimation
based on KF. In consequence due to different validation methods,
filter tunings, equivalent circuit models (ECMs) and environmental
conditions, filter algorithms are often not comparable.

In the paper, we present a comparative study of the most
commonly used filter algorithms. Based on the validation method
developed in [5]. The focus of this work is to show the influence of
the temperature, ECM and the filter tuning on the estimation
behaviour and accuracy of the investigated KF.
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To give an overview of the different filter algorithms, the
current state of the art of single Kalman filter (SKF) and dual
Kalman filter (DKF) is presented. In Section 2 the ECMs used in this
paper are derived and the parametrisation of the models is
presented. In Section 3 the general KF equations are described and
the differences between the filter variations are identified. After
that, Section 4 summarises the validation and benchmark method
from our previous work [5]. The measurement set-up and filter
tuning is shown in Section 5, followed by the comparison of
different filters in Section 6. To summarise our work, a conclusion
is given in Section 7.

1.1. Equivalent circuit models

In the field of battery modelling, the charge and discharge
behaviour of batteries is mainly described by three different
modelling approaches. The most accurate, but, in consequence,
most complex method is the electrochemical model. Here, mass
and charge transfer reactions in the battery are described on a
fundamental level with numerous partial differential equations.
With this approach an accurate prediction of the terminal voltage
can be achieved. However, the high complexity of the model comes
with the price of high parametrisation and computational effort. In
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Acronyms

AEKF adaptive extended Kalman filter
AKF adaptive Kalman filter

BMS battery management system

CcC constant-current

cccv constant-current constant-voltage
CDKF central difference Kalman filter

cv constant-voltage

DAEKF dual adaptive extended Kalman filter
DC direct current

DEKF dual extended Kalman filter

DKF dual Kalman filter
ECM equivalent circuit model
EKF extended Kalman filter

KF Kalman filter

LKF linear Kalman filter

LUT look-up table

NCA nickel-cobalt-aluminium

NN neuronal network

ocv open circuit voltage

RMS root mean square

SAEKF single adaptive extended Kalman filter

SEKF single extended Kalman filter

SKF single Kalman filter

SLC synthetic load cycle

SLKF single linear Kalman filter

SOC state of charge

SPKF sigma point Kalman filter

SRCDKF single central difference Kalman filter
SSRCDKF single square root central difference Kalman filter
SSRUKF single square root unscented Kalman filter
SUKF single unscented Kalman filter

UKF unscented Kalman filter

[6-9] a KF-based SOC estimation with an electrochemical model is
introduced. Here the state vector of the filter includes more than
five states variables.

An additional modelling method is the black box model. Here,
no physical knowledge about internal cell processes is required.
Examples for black box models are stochastic models [10], fuzzy
logic models [11] or neuronal network (NN) models [12]. To the
authors knowledge, for the application with a Kalman Filter, in
literature only NN models are interesting [13,14].

The most common approach is based on an ECM. Here the
electrochemical behaviour of the cell is approximated by electrical
elements such as resistors or capacities. Here, common imple-
mentations, like the Shepherd, Unnewehr and Nernst models,
approximate the cell behaviour with a voltage source and
additional resistors [3]. In [3,15-22] this three models are
combined and used in a KF. [19] achieved higher estimation
accuracy by using a combined approach of the Shepard, Unnewehr,
Nernst model and the combination of these models by selecting the
model in dependency on the voltage level.

By extending the ECM with additional capacitor and resistor
networks (RC terms), model accuracy can be significantly
enhanced. However, an increasing amount of RC terms results in
higher model complexity and parametrisation effort. In [23,2,3,24-
29,13,30-45] different KFs are implemented with one RC term. To
achieve a higher accuracy of the voltage calculation, [46-60]
implemented different KFs with two RC terms.

Further enhancements of model accuracy can be achieved by
implementing a charge and discharge dependency of the ECM
elements [25,34,3,17] and/or hysteresis effects of the open circuit
voltage (OCV) [3,61,16,29].

Hu et al. [62] compared the above mentioned models and their
influence on the filter accuracy and comes to the conclusion that
the ECM battery model with one RC term provides the best
compromise between accuracy and complexity.

1.2. Kalman filter

The KF is based on a set of differential equations to predict the
state of a physical process. Therefore, it minimises the error of the
states variables related to the measured and predicted output of a
linear system. A common use of the filter in the battery field is to
calculate the predicted output based on an ECM and a coulomb
counter. Therefore, the relationship between the SOC and the OCV
is considered. For linear systems a linear Kalman filter (LKF) can be
used for state estimation [50,44].

Due to the non-linear cell behaviour, the LKF is rarely used in
literature. By linearising the system and measurement matrices in
the actual state by first-order Taylor approximation of the
differential equations, the KF can be applied to batteries. This
approach is called extended Kalman filter (EKF) [17,27,25,26,4,
63,64,47,49,31,51]. However, filter estimation can result in
insufficient errors and divergence of the filter, due to the
linearisation error and the neglect of the higher-order derivatives
of the Taylor approximation [64]. For this reason the sigma point
Kalman filter (SPKF) is developed. Here no derivatives are required,
the linearisation is approximated by a set of sigma points
[65,24,64]. Two common types of the SPKF are the unscented
Kalman filter (UKF) and the central difference Kalman filter (CDKF).
In [50,17,40,66-69] a UKF based on the unscented transformation
is presented. This transformation is a method to approximate the
expected value and the covariance of a non-linear transformed
random variable by omitting the derivation of system and
measurement matrices [64].

The CDKF is based on the interpolation according to Sterling
[64,70,23]. As in the case of the UKF, the derivation is omitted. The
difference between both filters is connected to the implementa-
tion of scaling and gain factors. While the CDKF uses only one
scaling factor, the UKF uses three. The disadvantage of both filters
is the required square root calculation of the covariance matrix
with the Cholesky factorisation in each time step. Thereby
rounding errors can occur and the positive definition of the
covariance matrix cannot be guaranteed [71]. To reduce the
calculation error, Wan et al. [67] and Rudolph Van der Merwe et al.
[64] introduced the square root forms of the UKF and CDKF. Here
the Cholesky factorisation is only updated and not calculated in
each time step.

1.3. Dual Kalman filter

The state of charge estimation with a KF highly dependent on
the correctness of the ECM parameters. If parameters are not
exact or changing over time the estimation error of the filter
increases. A joint or dual estimation can compensate this by
adapting the ECM parameters. In case of the joint estimation, the
states and parameters are in the same state-space [72,73]. Due to
the higher order of the resulting system, the computational
effort increases with the third order (n®) of the state vector n
[24]. To keep the systems order low, a separate state-space
model can be used. Here, both filters work in parallel [26,2-
4,70,64,74], but, in consequence, the correlation between the
states and parameters may get lost. This could arise in higher
estimation errors [24].



Download English Version:

https://daneshyari.com/en/article/5127377

Download Persian Version:

https://daneshyari.com/article/5127377

Daneshyari.com


https://daneshyari.com/en/article/5127377
https://daneshyari.com/article/5127377
https://daneshyari.com/

