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a b s t r a c t

Axisymmetric problems for an elastic halfspace are commonly analyzed by the boundary element (BE)

method by employing the axisymmetric fundamental solution for the fullspace. In such cases, the

discretization of the free surface is required, with its truncation at an appropriate location from the axis

of symmetry. This paper presents the BE implementation of the axisymmetric fundamental solution for an

elastic halfspace, given in terms of integrals of the Lipschitz–Hankel type, that satisfies in advance the

boundary condition of zero traction on the free surface and the decay of displacements in the far field.

Explicit equations for post-processing the results at internal points are provided, as well as adequate

numerical schemes to evaluate the boundary integrals arising in the method. This formulation can be easily

implemented in existing BE computational codes for axisymmetric fullspace problems, requiring only a few

modifications. Numerical results are provided to validate the proposed formulation.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The axisymmetric formulation in classical elasticity is useful
for the analysis of problems in geomechanics [1,2], as well as
contact problems for cylinders, spheres and circular plates [3–8].
Other applications involve the study of fracture mechanics phe-
nomena and inclusions [5,9–11].

In particular, the BE method is advantageous for axisymmetric
problems, since it reduces the analysis of the three-dimensional
domain to a one-dimensional mesh discretization requiring only
the evaluation of linear integrals. However, the fundamental
solutions involved are more complex, requiring special considera-
tions on their manipulation and integration to correctly evaluate
the influence coefficients arising in the boundary integral equa-
tions. Extensive surveys on the existing axisymmetric fundamen-
tal solutions are given by Wang and Liao [12,13], Wang et al. [14]
and Wideberg and Benitez [15].

The BE method for axisymmetric elasticity was first formu-
lated by Cruse et al. [16], using the fullspace fundamental
solution derived by Kermanidis [17]. Several contributions to
the formulation of the axisymmetric problem may be cited, such
as the expansion of non-symmetric boundary conditions by
Fourier series suggested by Mayr [18] and Rizzo and Shippy

[19,20], and the assessment of body forces by means of particular
integrals incorporated by Park [21]. Also, axisymmetric
formulations have been developed for transverse isotropy [22],
thermoelasticity [23], elastoplasticity [24] and viscoplasticity
[25]. In elastodynamics, the works by Wang and Banerjee
[26,27], Tsinopoulos et al. [28] and Yang and Zhou [29] in the
frequency domain should be mentioned. The method has also
been successfully applied to contact problems [30] and fracture
mechanics [31].

For axisymmetric halfspace problems, the BE formulation
employed with the fullspace fundamental solution requires
the discretization of the infinite free surface. In this case, the
surface must be truncated at a reasonable distance from the
axis of symmetry and the region of interest [32]. The disadvan-
tage of such a scheme is that a large number of boundary
elements is needed to model the remote boundary satisfactorily,
so that relative displacements in particular can be accurately
evaluated.

An alternative way to deal with this problem is to use infinite
boundary elements, as suggested by Watson [33]. These infinite
elements, which simulate the decay of the displacements and
stresses in the far field, are mapped onto a finite region in terms
of an intrinsic coordinate system to facilitate the integration. A
variety of infinite elements can be found in the literature for
three-dimensional elasticity, depending on the mapping scheme
used and the application [34–36]. However, such elements are not
available for problems with axisymmetry, probably because
treating the integration of the singular kernels over the mapped
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infinite elements is not straightforward for the fullspace funda-
mental solution. Therefore, Kelvin’s fundamental solution is
usually employed together with the available three-dimensional
surface infinite elements for axisymmetric applications in the
halfspace [37–39], thus requiring the boundary surfaces to be
discretized.

Another way to treat this problem is to implement the
fundamental solution that satisfies in advance the traction free
boundary condition on the free surface, which circumvents its
numerical discretization. In elasticity, this approach was used by
Telles and Brebbia [40] and Dumir and Mehta [41] to examine
problems for an isotropic and orthotropic halfplane, respectively.

This work presents a BE formulation for axisymmetric elasti-
city problems for a halfspace [42] that makes use of the funda-
mental solutions due to radial and axial ring loads embedded in a
halfspace derived by Hasegawa [43,44]. The resulting equations
could be manipulated by expressing the fundamental solutions in
terms of Lipschitz–Hankel integrals, as adopted by Selvadurai and
Rajapakse [5] using extensions to the solutions developed by
Mindlin [45] and Mindlin and Cheng [46]. Since the terms of the
fullspace fundamental solution can be identified as constituents
of the halfspace fundamental solution, the proposed formulation
can be implemented by introducing only a few modifications in
existing axisymmetric computational codes. Explicit equations
are presented for expressing results at internal points as well as
appropriate numerical schemes to accurately evaluate the inte-
grals arising in the formulation. Problems related to torsional
loads, not addressed in this work, involve simpler fundamental
solutions and can be examined in a similar manner.

Section 2 of this paper introduces the axisymmetric funda-
mental solution for the elastic fullspace and an elastic halfspace.
Section 3 presents the axisymmetric BE formulation, followed by
Section 4 that deals with the numerical integration. Finally,
Section 5 illustrates numerical examples that validate the pro-
posed formulation.

2. Axisymmetric fundamental solution

The axisymmetric fundamental solution for elasticity consists
of displacements un

ijðP,Q Þ and stresses sn

ijkðP,Q Þ due to ring loads in
the i-direction applied at Pðx,z0Þ and centered in the z-axis. The
continuum has shear modulus m and Poisson’s ratio n. The
solutions are given in the cylindrical coordinate system (r,z).
The indices j and k stand for the displacement and stress
components measured at Q ðr,zÞ.

For the fullspace, displacements due to ring loads were first
derived by Kermanidis [17], by applying Betti’s theorem to the
Papkovich–Neuber solution [47] for an elastic medium of infinite
extent. Subsequently, Cruse et al. [16] and Bakr and Fenner [23]
solved Navier’s equilibrium equations by expressing the displace-
ments as Galerkin vectors [47] and considering ring loads as body
forces. Also, Shippy et al. [48] integrated Kelvin’s solution [47] for
the three-dimensional infinite medium along a circular path
centered on the axis of symmetry.

For the halfspace, Hasegawa [43,44] deduced displacements
and stresses from stress functions [49] obtained by means of
Fourier and Hankel transforms and considering ring loads as body
forces. Later, Selvadurai and Rajapakse [5] imposed boundary
conditions and continuity conditions to displacements and stres-
ses expressed by Muki’s solution [50,51] and arrived at the same
solutions. These solutions were also obtained by Hanson and
Wang [52] as a particular case of the problem for the medium
with transverse isotropy.

Both axisymmetric fundamental solutions for fullspace and
halfspace can be expressed by means of either integrals of the

Lipschitz–Hankel type involving products of Bessel functions [53],
or complete elliptic integrals of the first and second types [54], or
Legendre functions [54]. In this work, the approach presented by
Selvadurai and Rajapakse [5] is adopted. Expressions are written
in terms of integrals of the Lipschitz–Hankel type [53]

Ipqlðx,r; cÞ ¼

Z 1
0

JpðxtÞJqðrtÞe�cttl dt ð1Þ

in which p, q and l are integers, JpðxtÞ and JqðrtÞ are Bessel
functions of the first kind of order p and q, respectively. The
integrals arising in the axisymmetric fundamental solutions are
convergent [53] and their closed form expressions in terms of
complete elliptic integrals of the first, second and third kinds [54]
are listed in Appendix A.

2.1. Ring loads in an elastic fullspace

The fundamental solution can be derived from Muki’s solution
[50,51] of the Navier equilibrium equations for an elastic isotropic
medium,

ð1�2nÞ r2ur�
ur

r2

� �
þD,r ¼ 0 ð2Þ

ð1�2nÞr2uzþD,z ¼ 0 ð3Þ

where

D¼ ur,rþ
ur

r
þuz,z ð4Þ

Muki represented displacements by means of harmonic and bi-
harmonic functions and used Hankel transforms and their corre-
spondence to generalized Fourier–Bessel transforms to arrive at a
general asymmetric solution. This solution can be specialized for
axisymmetry, leading to

ur ¼
1

2

Z 1
0

dG

dz
þ2H

� �
½J1ðrtÞ�J�1ðrtÞ�t2 dt ð5Þ

uz ¼

Z 1
0
ð1�2nÞd

2G

dz2
�2ð1�nÞt2G

" #
J0ðrtÞ dt ð6Þ

where

Gðt,zÞ ¼ ðAþBzÞeztþðCþDzÞe�zt ð7Þ

Hðt,zÞ ¼ Eezt
þFe�zt

ð8Þ

in which AðtÞ,BðtÞ, . . . ,FðtÞ are unknown functions.
Consider a fullspace split into two parts, I and II, by a plane

normal to z at z¼ z0 as shown in Fig. 1. Applying Eqs. (5) and (6)
and the regularity conditions for the displacements and stresses
as z-71,

uI,II
i ðr,71Þ¼ 0, sI,II

ij ðr,71Þ¼ 0 ð9Þ

Fig. 1. Ring loads in the elastic fullspace: (a) radial direction; (b) axial direction.

M.F.F. Oliveira et al. / Engineering Analysis with Boundary Elements 36 (2012) 1478–1492 1479



Download	English	Version:

https://daneshyari.com/en/article/512738

Download	Persian	Version:

https://daneshyari.com/article/512738

Daneshyari.com

https://daneshyari.com/en/article/512738
https://daneshyari.com/article/512738
https://daneshyari.com/

