
Efficient heuristic for solving non-permutation flow-shop scheduling
problems with maximal and minimal time lags

Song Ye, Ning Zhao ⇑, Kaidian Li, Chuanjin Lei
School of Mechanical Engineering, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083, PR China

a r t i c l e i n f o

Article history:
Received 3 November 2016
Received in revised form 17 July 2017
Accepted 18 August 2017
Available online 9 September 2017

Keywords:
Non-permutation
Flow shop
Time lags
Makespan
Iterated greedy algorithm

a b s t r a c t

Flow-shop scheduling problem is an attractive subject in the scheduling field, which has attracted the
attention of many researchers in the past five decades. However, few studies focused on non-
permutation flow-shop problems with time lag consideration. In the present work, the non-
permutation flow-shop scheduling problem with time lags has been studied to minimize the makespan
as a performance measure. First, we obtain a near-optimal permutation solution using the permutation
flow-shop problem (PFSP) heuristic. Then, an effective iterated greedy heuristic, which can identify high-
quality non-permutation solutions, is presented. Using the neighbourhood non-PFSP searching heuristic,
we searched for non-PFSP schedules using the proposed heuristic algorithms in the second stage. Finally,
the computational results were used to evaluate the performance and effectiveness of the proposed
heuristic. The proposed heuristics were able to find near optimal non-PFSP solutions with very short
computational time. Thus, the proposed algorithms is efficient and can be used in industrial applications.
Moreover, the proposed heuristic algorithms are very simple to implement, which is attractive for indus-
trial applications.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Flow-shop problems (FSPs) have been studied for more than
half a century. The classical FSP investigates n jobs for processing
in m machines. It is called permutation flow-shop scheduling
(PFSP) if all machines process their jobs in the same sequence;
otherwise, it is a non-permutation scheduling (non-PFSP)
Lageweg, Lenstra, & Rinnooy Kan, 1978; Potts, Shmoys, &
Williamson, 1991. Obviously, non-PFSP has more sequences and
is more complex than PFSP. According to some literatures (Cui,
Lu, Zhou, Li, & Han, 2016), the PFSP schedules are no longer dom-
inant compared with non-PFSP in more than three machines (Cui
et al., 2016). Consequently, non-PFSP schedules arises and possible
to be the optimal solution when machine number is greater than
three.

Time lag means the waiting-time constraints between two con-
secutive operations in the same job. Maximal time lags used to
demand the waiting time between operations must not be overly
long to avoid deterioration of products (Hodson, Muhlemann, &
Price, 1985). Minimal time lags may be used when waiting time
between operations is required for processing, such as cooling

(Fondrevelle, Oulamara, & Portmann, 2006), material handling
(Soukhal, Oulamara, & Martineau, 2005), and chemical reactions
(Chu & Proth, 1996). Minimal and maximal time lags exist in many
industrial applications such as fabrication of printed circuits (Kim,
Lim, & Park, 1996), hoist-scheduling problems (Manier & Bloch,
2003), perishable-product production (Johnson, 1954), and in
biotechnology and chemistry (Nawaz, Enscore, & Ham, 1983).
Thus, FSPs that consider time lags are realistic industrial problems.

Since the original PFSP paper was published by Johnson (1954),
various researchers have studied the problem. Consequently, many
heuristic and meta-heuristic methods have been developed to
date. Among these methods, NEH heuristic (Nawaz et al., 1983)
is commonly regarded as the most effective constructive heuristic.
Fondrevelle et al. (2006) investigated two-machine PFSPs with
minimal and maximal time lags and showed that PFSP is not dom-
inant when the objective is to minimize the makespan, especially
when the minimal and maximal time lags are greater than the pro-
cessing time. Subsequently, Ruiz and Stutzle proposed a meta-
heuristic method in 2007 based on the NEH heuristic, which is
called the iterated greedy (IG) algorithm Ruiz & Stutzle, 2007.
Nikbakhsh, Mohammad, and Mohammad (2012) proposed an
immune algorithm for hybrid FSPs that consider time lags and
sequence-dependent setup times. Dhouib, Teghem, and Loukil
(2013) proposed a mixed-integer mathematical programming

http://dx.doi.org/10.1016/j.cie.2017.08.024
0360-8352/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: zhning@sina.com (N. Zhao).

Computers & Industrial Engineering 113 (2017) 160–184

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2017.08.024&domain=pdf
http://dx.doi.org/10.1016/j.cie.2017.08.024
mailto:zhning@sina.com
http://dx.doi.org/10.1016/j.cie.2017.08.024
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


and simulated annealing algorithm to minimize the number of
tardy jobs and the makespan. Sheikh (2013) proposed a genetic
algorithm (GA) with the twin objectives of maximizing the total
profit and minimizing deviation from the due date. Most of these
studies focused on the PFSP and neglected the non-PFSP. However,
as stated by Fondrevelle, PFSP is not always dominant. In other
words, in some industrial applications, non-permutation solutions
may bring more benefit than permutation solutions. However,
these benefits are consequent neglected when only PFSP algo-
rithms are applied.

Only very few papers deal with the non-PFSPs. Lin and Ying
(2009) proposed a hybrid approach that draws on the advantages
of simulated annealing and tabu search for the non-PFSP without
time lags. Mehravaran and Logendran (2012) considered non-
PFSP schedules for a flowshop problem with sequence-dependent
setup times. Ying (2008) proposed an effective IG heuristic for
the non-PFSPs. Vahedi-Nouri, Fattahi, and Ramezanian (2013) pro-
posed an effective improvement heuristic for the non-PFSPs with
learning effects and availability constraints. To the best of the
author’s knowledge, almost all of these studies did not consider
time lags.

Several researchers have focused on the job-shop problem with
time lags which can be also solve the non-PFSPs. Caumond,
Lacomme, and Tchernev (2008) proposed a memetic algorithm
based on a disjunctive graph that is suitable for various industrial
situations. His algorithm covered both job-shop problems and
flowshop problems. Artigues, Huguet, and Lopez (2010) proposed
an insert heuristic and generalized resource constraint propagation
approach for the job-shop problem. The results of the experiments
showed that their approach is suitable for instances with tight time
lags. The algorithms cited above provided excellent results. How-
ever, these algorithms are not specially designed for non-PFSP
problems, and therefore these algorithms are not sufficiently effi-
cient for industrial application, especially in complex scheduling
problem. Consequently, more efficient approaches for non-PFSP
industrial applications are needed.

Because both PFSP and non-PFSP exist in real industrial flow
shop scenarios with time lags, therefore scheduling approaches
suit for both PFSP and non-PFSP have strong practical values. For
this reason, Zhao, Ye, Li, and Chen (2017) propose a universal
approach to resolve both of them with time lag consideration.
The approach includes two main steps: First, improving traditional
IG algorithm developed by Ruiz and Stutzle (2007) and search opti-
mal PFSP solutions. Second, search non-PFSP schedules neighbours
to the optimal PFSP solution and keep the best one. This approach
results PFSP solution or non-PFSP solution, it depends on whether
better non-PFSP schedules can be reached by neighbourhood
searching. However, it is destined to be useless when PFSP is
dominated.

In general, although some studies have focused on PFSP and
non-PFSP problems, but studies about non-PFSP with time lags
are not sufficient. Due to the complexity of non-PFSP and in prac-
tical viewpoint, we further the study with the idea that neighbour-
hood searching with initial PFSP solution (Zhao et al., 2017). In
order to avoid useless non-PFSP neighbourhood searching, we
focused on studying the dominance conditions of PFSP and non-
PFSP in the present work. Furthermore, we develop hybrid neigh-
bourhood searching heuristic to improve the efficiency of non-
PFSP searching. Consequently, we integrated the heuristics with
the PFSP searching approaches and validate them with realistic
scheduling problems.

The remainder of this paper is organized as follows. Section 2
analyses the problem and defines the condition for PFSP and
non-PFSP respectively. Section 3 outlines our proposed algorithms
for non-PFSPs. Section 4 shows the evaluation performance by

computational results. Finally, our conclusions are presented in
Section 5.

2. Problem definition and dominance condition

In this section, we analyse the effects of time lags of the non-
PFSP. To illustrate the studied problem, we provide the following
definitions.

2.1. Notation definition

We assume a set of n independent jobs (J1, J2, . . ., Jn) scheduled
on a set ofmmachines (M1,M2, . . .,Mm). Each job comprisesm oper-
ations. All n jobs are to be processed in the same machine sequence
from 1 to m. Furthermore, we assume that the processing time of
the jobs in each machine is known in advance and that all jobs
are available at the start time. All machines are constantly avail-
able to process all scheduled jobs when required. Every job can
be processed by at most one of the machines at any given time
without preemption. Every machine can process no more than
one job at a time, and the processing of each job cannot be inter-
rupted. Time lag is defined as the gap between the stopping time
of the job in the upstream machine and its starting time in the
downstream machine (stop–start lags). Our objective is to mini-
mize the completion time of the final job. The following notations
are defined:

pj,i Processing time of job j in machine i (pj,i is fixed and
non-negative)

tj,i Start time of job j in machine i
cj,i Completion time of job j in machine i

hmin
j;i

Minimal time lag of job j from machine i to machine i
+ 1

hmax
j;i Maximal time lag of job j from machine i to machine i

+ 1
hj;i Actual time lag of job j from machine i to machine i + 1

Our objective is to determine tj,i that satisfies

8ðj 6 n; i 6 mÞ;minðmax cj;iÞ ð1Þ
s.t.

8ðj 6 n; i 6 mÞ; cj;i ¼ tj;i þ pj;i ð2Þ

8ðj 6 n; i < mÞ; cj;i þ hmax
j;i P tj;iþ1 P cj;i þ hmin

j;i ð3Þ

8ðj 6 n; i 6 mÞ; tjþ1;i P cj;i ð4Þ

8ðj 6 n; i 6 mÞ; hmin
j;i 6 hj;i 6 hmax

j;i ð5Þ
Eq. (1) indicates that the objective is to minimize the makespan,

Eq. (2) denotes the processing time constraint, Eq. (3) denotes the
time lag constraints, and Eq. (4) denotes the machine capacity con-
straints. Eq. (5) denotes the actual time lag constraints.

2.2. Feasibility and dominance of non-PFSP in two machines problem

Fondrevelle (Fondrevelle et al., 2006) has proved the NP hard-
ness of two machines problem and analysed the dominance of per-
mutation and non-permutation schedules. In this paper, we
investigate the feasibility and advantage for transforming permu-
tation schedules to neighbourhood non-permutation schedules.
We also start the study from two-machine problem. We consider

S. Ye et al. / Computers & Industrial Engineering 113 (2017) 160–184 161



Download English Version:

https://daneshyari.com/en/article/5127428

Download Persian Version:

https://daneshyari.com/article/5127428

Daneshyari.com

https://daneshyari.com/en/article/5127428
https://daneshyari.com/article/5127428
https://daneshyari.com

