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A B S T R A C T

Various methods have been proposed to monitor changes in a process covariance matrix. In view that a cov-
ariance matrix can be fully defined by its eigenvalues and eigenvectors, this paper suggests monitoring the
covariance matrix based on eigenvalues as another alternative. Although there are some recent discussions about
the use of eigenvalues for hypothesis testing in multivariate analysis, the use of them for monitoring covariance
matrix changes has been less studied in multivariate quality control. The simulation results show that the
proposed method performs especially well under simultaneous shifts in both variance and correlation elements
and competitively under shifts in variance or correlation elements only, compared to the existing approaches.
This demonstrates a good property of the proposed method being able to provide a robust detection performance
under a wide variety of scenarios. A real example is also provided to illustrate the implementation of the pro-
posed method.

1. Introduction

Product quality has been the key driver in manufacturing/re-
manufacturing decision making (Diallo, Venkatadri,
Khatab, & Bhakthavatchalam, 2017). To achieve continuous quality
improvement, statistical quality control methods have been widely
used. In modern manufacturing industries, it is very common that
multiple quality characteristics are measured due to rapid development
in information retrieval and storage technologies. Aimed at making use
of the correlation structure among variables, multivariate statistical
process control (MSPC) techniques have been widely discussed in the
past two decades (Stoumbos, Reynolds, Ryan, &Woodall, 2000;
Woodall, 2001; Woodall &Montgomery, 1999). Beginning with the
seminal work by Hotelling (1947, chap. ii), there is a great deal of work
devoted to the development of multivariate control charts for mon-
itoring both the process mean vector or/and covariance matrix.
Bersimis, Psarakis, and Panaretos (2007) provided an extensive review
for the existing multivariate control charts. Some recent contributions
to the development of MSPC techniques include Alfaro, Alfaro, Gamez,
and Garcia (2009), Zou and Qiu (2009), Du, Lv, and Xi (2012), Costa
and Machado (2013), Wu et al. (2015), Das, Zhou, Chen, and Horst
(2016), Qi, Wang, Zi, and Li (2016), Yu and Chen (2016), Li, Pu, Tsung,
and Xiang (2017).

Like the monitoring of process mean vector, it is also important to
monitor process covariance matrix, which describes the variance of
each variable and the covariance between any two variables. A number

of methods have been proposed for monitoring covariance matrices.
The very early work can be traced back to Montgomery and Wadsworth
(1972). They first proposed the generalized variance method by
charting the determinant of the sample covariance matrix. A major
drawback of it is the poor detection ability in the case when some
elements of the variability increase while others decrease. Another al-
ternative is based on the generalized likelihood ratio (GLR) test. A
sample of research in this category includes Alt (1984), Alt and Bedewi
(1986), Alt and Smith (1988), Levinson, Holmes, and Mergen (2002),
and Vargas and Lagos (2007).

Note that the GLR test proposed by Alt (1984) is essentially a She-
whart-type control chart. It is sensitive for detecting large transient
changes in the covariance matrix but less sensitive for detecting smaller
persistent shifts. In order to improve the performance in detection small
shifts, some cumulative methods are further suggested. For example,
Healy (1987) proposed a cumulative SUM (CUSUM) control chart to
detect the change of covariance matrix. Similarly, some authors sug-
gested the multivariate exponentially weighted moving average
(MEWMA) control charts based on the likelihood ratio test for mon-
itoring covariance matrices. See, for example, Yeh, Lin, Zhou, and
Venkataramani (2003), Yeh, Huwang, and Wu (2005, 2004), Huwang,
Yeh, and Chien-Wei (2007) and Hawkins and Maboudou-Tchao (2008).
Some other variations include Memar and Niaki (2009) and Variyath
and Vattathoor (2014).

However, most of the above control charts do not take into account
process knowledge gleaned from engineering and operations. When the
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process covariance matrix changes, it is typically the case in practice
that only a small subset of elements would be affected (Li, Wang, & Yeh,
2013). The change in the covariance matrix will be reflected in a few
variance and/or covariance elements. This is so-called “sparsity”
characteristic. It would be more efficient for a control chart to monitor
these few changed elements, compared to the monitoring of all the
elements in the covariance matrix. In order to obtain a sparse estimate
of the covariance matrix, the penalized likelihood ratio (PLR) approach
is often employed. Different penalty terms can be added to the GLR for
different purposes. For example, Yeh, Li, and Wang (2012) proposed the
LASSO based MEWMA control chart for monitoring covariance matrix
under the case with individual observations. The penalty is based on the
L1 norm of the difference between the precision matrix (or the inverse
of the covariance matrix) and the in-control covariance matrix. Later, Li
et al. (2013) further developed a PLR-type control chart for more
general cases with subgroup size larger than or equal to the number of
variables. The penalty term is based on the L1 norm of the precision
matrix. Maboudou-Tchao and Agboto (2013) applied the graphical
LASSO estimator of the covariance matrix under the case with few
observations than variables. Similarly, Maboudou-Tchao and Diawara
(2013) discussed the graphical LASSO estimator of the covariance
matrix under the case with individual observations.

The above PLR-type control charts have been shown to perform well
in many cases. However, their appealing performance heavily depends
on the choice of the tuning parameter to achieve different level of
sparsity, when estimate the dispersion matrix or covariance matrix. The
tuning parameter has significant effect on the control chart perfor-
mance at different shift magnitudes. Unfortunately, the tuning para-
meter is not easy to specify. To accommodate such problem, Shen,
Tsung, and Zou (2014) recently proposed a MaxNorm chart to monitor
changes in a covariance matrix. The basic idea is to first calculate the
deviation of the estimated covariance matrix from the target matrix,
and then to transform the resulting matrix into a deviation vector, and
finally to assess if the process covariance matrix changes based on the
L2 norm and the ∞L norm of the deviation vector.

The objective of this paper is to suggest monitoring the covariance
matrix based on eigenvalues as another feasibility. This is motivated by
the fact that a covariance matrix can be uniformly displayed by its ei-
genvalues and eigenvectors. The eigenvalues describe the key char-
acteristics of the covariance matrix such as determinant and trace.
Moreover, the likelihood ratio is also closely related to eigenvalues.
Therefore, in addition to the use of deviation vector/matrix to assess
changes in the covariance matrix, it is also feasible to determine
changes in the covariance matrix based on changes in the eigenvalues.
The basic idea of the proposed method is to make a combined use of the
L2 norm and the ∞L norm of the estimated eigenvalues to track changes
in the covariance matrix. There are some discussions about the use of
eigenvalues for testing sphericity, i.e., if the population covariance
matrix is proportional to the identity matrix. See, for example,
Marčenko and Pastur (1967), Johnstone (2001, 2009) and Nadler
(2011). However, the use of eigenvalues for monitoring the covariance
matrix has been less studied in MSPC. One exception is Noor and
Djauhari (2011) in which they suggested the use of the largest eigen-
value of the sample covariance matrix for monitoring multivariate
process variability. Note that the proposed method differs from the
method of Noor and Djauhari (2011) in two aspects. First, in addition to
the use of the largest eigenvalue, the proposed method also makes use
of the L2 norm of the estimated eigenvalues for monitoring. Second,
Noor and Djauhari (2011) used the sample covariance to estimate the
covariance matrix, and thus their method is not applicable to the case
with individual observations. Instead, the proposed method is more
flexible, which can work in both the case with individual observations
and a subset of observations.

The rest of the paper is organized as follows. In Section 2, we briefly
review some existing control charts. In Section 3, the proposed control
chart is presented. In Section 4, extensive simulations were performed
to compare the performance between the proposed control chart and
other existing charts numerically. In Section 5, a real example is pro-
vided to illustrate the use of the proposed chart. Finally, some con-
cluding remarks are discussed in Section 6.

2. The existing control charts

Assume that the process observations are independently and iden-
tically distributed with multivariate normal μN Σ( , )p , where μ and Σ are
the process mean and covariance matrix, respectively. In this study, we
focus on Phase-II monitoring of changes in the covariance matrix, as-
suming that the mean vector μ is known and fixed. Moreover, assume
that the in-control covariance matrix, =Σ ΣIC, is known or can be ac-
curately estimated from Phase I data. Denote =Σ ΣOC as the out-of-
control covariance matrix. The objective is to detect if the process
variability changes from ΣIC as soon as possible. Without loss of gen-
erality, (μ Σ, IC) can be simplified to (0 I, p) by standardizing data with μ
and ΣIC. These assumptions are consistent with those made in Shen
et al. (2014).

Let …x x, ,t t n,1 , be the set of n observations with dimension ×p 1
collected in the subgroup at time t. When the sample covariance matrix
is used to estimate the underlying process variance matrix, a rational
subgroup of observations is often required. To relax this limitation,
Hawkins and Maboudou-Tchao (2008) further considered a more gen-
eral estimate based on the multivariate exponentially weighted moving
covariance (MEWMC), which can be applied to both the case with in-
dividual observations and the case with a subgroup of observations. The
MEWMC is defined as

= − + = …−λ λ tΣ Σ S(1 ) , 1,2, ,t t t1 (1)

where St is a ×p p sample covariance matrix given by
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and = …x xX ( , , )t t t n,1 , is a ×p n matrix. The initial value of Σt is set to
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where tr (·) is the trace operator, and |·| represents the determinant.
Omitting unneeded constants, the above log-likelihood ratio for com-
paring Σt with =Σ IIC p reduces to

∝ − −LR tr pΣ Σ( ) log| | .t t t (3)

Hawkins and Maboudou-Tchao (2008) proposed a control chart,
denoted as the HMT chart for simplicity, to monitor the process
variability based on the simplified likelihood ratio, i.e.,

= − −T tr pΣ Σ( ) log| | ,t HMT t t, (4)

which triggers an out-of-control signal when Tt HMT, exceeds a threshold.
The HMT chart is shown to be powerful in detecting shifts that occur

in the majority elements of the covariance matrix. However, shifts may
occur only in a few of the variance/covariance elements in practice. To
take the advantage of the sparsity of shifts, some PLR-type control
charts have been proposed. For example, Li et al. (2013) developed one
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