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A B S T R A C T

The monitoring of a categorical process with serial dependence in which the current observation depends on its
past values is of great importance in many applications, including manufacturing and service management.
However, a great majority of existing research works are restricted to the cases where data are binary and of
first-order dependency, based on the assumption of a two-state first-order Markov chain. In this article, a general
categorical process with serial dependence that can have more than two attribute levels and higher-order de-
pendency structure is under consideration. We adopt the multivariate representation of the categorical variables
and integrate directional shift information into an adjusted log-linear model. Based on this, a novel control chart
is proposed for detecting shifts in the marginal distribution and in the dependence structure of serially dependent
categorical processes. Simulations have demonstrated its efficiency and robustness. The implementation of the
proposed control chart through a real example is provided as the guidance for practitioners.

1. Introduction

To maintain and improve the quality of processes, statistical process
control (SPC) proves its strength and effectiveness. For various types of
data different control charts have been developed accordingly. Among
all these methods, it is often assumed that observations are independent
of each other. In many applications however, this assumption is invalid
for some reason such as high frequency or short intervals of sampling.
For example in the textile industry, in the production line of cotton yarn
especially, quality inspection to see whether the yarn is conforming or
not is in fact conducted at very high speed, making serial dependence
very common.

For such autocorrelated processes, conventional control charts with
the independence assumption cannot work well, or even be misleading
sometimes. See Montgomery (2009) and references therein. Specifically
for autocorrelated continuous data, many works have been done to deal
with their monitoring. One may refer to Montgomery and Mastrangelo
(1991), Lu and Reynolds (1999), Apley and Shi (1999), Jiang, Tsui, and
Woodall (2000), Jiang (2004), Psarakis and Papaleonida (2007), Zou,
Wang, and Tsung (2008), Huang, Bisgaard, and Xu (2014) and so on.

However, for serially dependent categorical data, monitoring tech-
niques still remain rare. Recent research has made progress in mon-
itoring serially dependent binary processes that have two attribute le-
vels, such as good or bad. The main idea is to use a two-state Markov

chain. See Bhat and Lal (1990), Shepherd, Champ, Ridgon, and Fuller
(2007), Mousavi and Reynolds (2009) for example. Only first-order
dependency is considered by the above mentioned methods because of
the assumption of a first-order Markov chain. Recently, He, Wang,
Tsung, and Shang (2016) proposes to use the bivariate binomial AR(1)
model for the monitoring of autocorrelated bivariate binomial pro-
cesses, still accounting for only first-order dependency and binary data.

Furthermore, if the categorical process is multinary, i.e., it has more
than two attribute levels, such as good, marginal, and bad, its mon-
itoring will become even more complex. For independent multinary
processes, Marcucci (1985), Duran and Albin (2010), Ryan, Wells, and
Woodall (2011) and Weiß (2012) proposed corresponding control
charts. For multinary categorical processes with serial dependence,
Weiß (2016) applied the Pearson chi-square statistic and the Gini index
to their monitoring, and found that their distributions are different from
those obtained in the independent cases.

To handle a general serially dependent categorical process with h
levels ( ⩾h 2) and dth-order dependency ( ⩾d 1), there exist many
challenges. One major problem is how to model such processes. Though
a dth-order Markov chain with h states is a natural candidate, it requires

−h h( 1)d parameters which may lead to overparametrization
(Kedem& Fokianos, 2002). Dimension reduction techniques are needed
if higher-order Markov chains are used. Another observation is that
current methods derived from Markov chains mainly focus on first-
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order dependency, while marginal probabilities and higher-order de-
pendency are ignored. To make the monitoring scheme more effective,
it is necessary to encompass the information of the marginal distribu-
tion and the dependence structure simultaneously.

To settle the aforementioned problems of monitoring a categorical
process with a general number h of attribute levels and with serial
dependence of a general order d, we first transform the observations of
the process to a multi-way contingency table. Then an adjusted log-
linear model is applied to model the cell counts in this contingency
table. The underlying idea is to use the multivariate representation of
an autocorrelated process, which is similar to Apley and Tsung (2002)
and Jiang (2004) for monitoring autocorrelated continuous processes.

Besides, some directional shift information is also exploited and
incorporated into the log-linear model. Such information considers the
most possible shift patterns in practice and facilitates the monitoring.
Based on this, a novel control chart is proposed, which can be im-
plemented to a serially dependent categorical process with h ( ⩾h 2)
levels and dth-order dependency ( ⩾d 1). Therefore, this chart is able to
efficiently detect changes in the marginal distribution or dependence
structure.

The remainder of this article is organized as follows. First, the
modeling of a categorical process with serial dependence is introduced
in Section 2. The directional monitoring approach is proposed in Sec-
tion 3. Comparison studies are shown and analyzed in Section 4, fol-
lowed by a case study in Section 5. Finally Section 6 concludes this
article. Some derivations are provided in the appendix.

2. Log-linear modeling

Suppose that a categorical factor X has h attribute levels, and that
the sequence X{ }t has dth-order Markov dependency, i.e., at time t X, t
depends on …− −X X, ,t t d1 . We use +d( 1)-dimensional multivariate vec-
tors to represent this univariate process. To be specific, let

= … +Y Yy [ , , ]d
T

1 1 be a vector of +d 1 factors. At each time point t, let
= … = …+ −Y Y X Xy [ , , ] [ , , ]t t t d

T
t d t

T
,1 , 1 . As a result, the observations of all the

+hd 1 cross-classifications among the level combinations of Yt i,
( = … +i d1, , 1) will form a square contingency table of dimension

 ×…×
+

h h
d 1

, with the count of a level combination stored in each cell.
Let … +pa ad1 1 be the joint probability of the occurrence of level combi-
nation … +a a( , , )d1 1 where = …a h1, ,i for = … +i d1, , 1, i.e., , and let

… +na ad1 1 be the count. Then in a sample of size N, we have
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and the cell counts in the contingency table jointly follow the multi-
nomial distribution … +N pMN( ;{ })a ad1 1 .

Based on the multivariate representation, log-linear models can be
used to characterize categorical processes with serial dependence,
which is similar to Li, Tsung, and Zou (2012). Generally log-linear
models relate the expectations of cell counts to main factor effects and
interaction effects. By assuming that each cell count follows a Poisson
distribution, a generalized linear model with the canonical link function
results (McCullagh &Nelder, 1989). In other words, for each cell count,
the logarithm of its expectation has a linear relationship with main
factor effects and interaction effects. However, given a sample of size N
within which all the cell counts sum up to N, then the cell counts jointly
follow the multinomial distribution N pMN( ; ) where p is the probability
vector. Hence the log-linear model can be rewritten based on the
probability vector p instead of expectations N p. For example, suppose
that X{ }t has second-order dependency and three factors Y Y Y, ,1 2 3 are used
to describe this serially dependent categorical process. Then each cell
corresponds to a level combination with probability pa a a1 2 3 where

= …a a a h, , 1, ,1 2 3 . The log-linear model is written as

= + + + + + + +p u u u u u u u uln a a a a a a a a a a a a a a a
(0) (1) (2) (3) (1,2) (1,3) (2,3) (1,2,3)

1 2 3 1 2 3 1 2 1 3 2 3 1 2 3

(1)

with ∑ =p 1a a a a a a, ,1 2 3 1 2 3 . Here u(0) is the intercept, u u u, ,(1) (2) (3) are the
main effects, u u u, ,(1,2) (1,3) (2,3) are the two-factor interaction effects, and
u(1,2,3) is the three-factor interaction effect.

To illustrate how the log-linear model characterizes the dependence
structure of a serially dependent categorical process, we still use the
above example and consider several cases below. If X{ }t is an in-
dependent sequence, i.e., Xt does not rely on − −X X,t t1 2, then the three
factors Y Y Y, ,1 2 3 are independent of each other. Hence model (1) would
reduce to

= + + +p u u u uln ,a a a a a a
(0) (1) (2) (3)

1 2 3 1 2 3

which contains the main effects only. If the process has only first-order
dependency, that is, given −X X,t t1 is conditionally independent of −Xt 2,
then model (1) becomes

= + + + + +p u u u u u uln ,a a a a a a a a a a
(0) (1) (2) (3) (1,2) (2,3)

1 2 3 1 2 3 1 2 2 3

which implies that given Y Y,2 1 and Y3 are independent of each other.
Note that in this case, if the two-factor interaction effect u(1,3) is added,
then second-order dependency exists. In a nutshell, the main effects
u u,(1) (2), and u(3) decide the marginal probability distribution of the se-
rially dependent categorical process, u(1,2) and u(2,3) correspond to first-
order dependency, u(1,3) and u(1,2,3) reflects second-order dependency.

In a general categorical process with dth-order dependency, the
associated +d 1 factors … +Y Y, , d1 1 lead to the log-linear model

∑= +
=

−+

ββp 1 Aln ,
i

i i0
1

2 1d 1

(2)

with =1 p 1T , constrained by some identifiability requirements de-
scribed in Li et al. (2012). Here p is the cell probability vector of di-
mension ×+h 11,d 1 is a column vector with 1 as all its entries, Ai is the
known design matrix with elements 1, or −1, or 0 and appropriate di-
mension. The derivation of design matrices can be found in the ap-
pendix of Li et al. (2012). Moreover, β0 represents the intercept, and
other βi’s represent main effects or interaction effects, among which

… +β β, , d1 1 correspond to the main effects, …+ + +β β, ,d d d2 ( 1)( 2)/2 correspond
to the two-factor interaction effects. Furthermore, due to the constraint

=1 p 1T , the parameters βi ( = … −+i 1, ,2 1d 1 ) are independent and can
vary freely, and the intercept β0 is determined and expressed by βi
( = … −+i 1, ,2 1d 1 ). Another observation is that the well-known logit
model can be easily derived from the above log-linear model. However
the logit model is not a good candidate for serially dependent catego-
rical processes since it cannot describe the dependency structure.

3. Directional monitoring

Based on the log-linear modeling of the multivariate representation
of serially dependent categorical processes, we can now turn to the
detection of abnormalities. This work focuses on Phase II monitoring,
so it is assumed that the in-control (IC) parameters in model (2) are
known or have been estimated in the retrospective analysis of Phase I
already, including the dependence order =d d0, the coefficient vectors
βi

(0) ( = … −+i 0,1, ,2 1d 10 ), and the cell probability vector p(0). The de-
pendence structure is supposed to be determined by a d0th-order
Markov process, and let … +

qa a
(0)

d1 0 1
denote the conditional probability

= = … =+ − −X a X a X aPr ( | , , )t d t d t d
(0)

1 1 10 0 0 where = …a h1, ,i for
= … +i d1, , 10 , that is, the conditional probability of Xt at level +ad 10

given −Xt d0 up to −Xt 1.
Shifts may occur either in the dependence order or in the condi-

tional probabilities. To express the change-point model, first let xt be a
column indicator vector of Xt , that is, xt is of dimension ×h 1 with 1 as
its kth element if Xt is at level k and 0’s otherwise. Then given the past
values …a a, , d1 of −Xt d up to −Xt 1, the elements of xt jointly follow the
multinomial distribution … +qMN(1;{ })a ad1 1 where = …+a h1, ,d 1 . Hence
the change-point model can be written as
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