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a b s t r a c t

This paper investigates the Distributed No-idle Permutation Flowshop Scheduling Problem (DNIPFSP)
with the objective of minimizing the makespan, which has not been discussed in any previous study.
This study presents an Iterated Reference Greedy (IRG) algorithm for effectively solving this problem.
The performance of the proposed IRG algorithm is compared with a state-of-the-art iterated greedy
(IG) algorithm, as well as the Mixed Integer Linear Programming (MILP) model on two well-known
benchmark problem sets. Computational results show that the proposed IRG algorithm outperforms
the IG algorithm. Given the NP-Complete nature of the DNIPFSP problem, this paper is the first study
to contribute a feasible approach for solving it effectively.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The permutation flowshop scheduling problem (PFSP) is one of
the most important scheduling problems. Johnson (1954) first
investigated the 2-machine PFSP and provided the so-called John-
son’s rule to minimize the makespan (i.e. the maximum comple-
tion time), while the 3-machine version is NP-complete (Garey,
Johnson, & Sethi, 1976). Over the past six decades, a variety of
studies have been developed on this problem with respect to the-
ories, applications, and solution approaches (Lee & Chung, 2013). A
few critical reviews (Framinan, Gupta, & Leisten, 2004; Ruiz &
Maroto, 2005; Yenisey & Yagmahan, 2014) have also been given
on this topic. Because of the NP-Complete property of the problem,
meta-heuristics have become useful and efficient methods when
solving large-scale PFSPs. Efficient meta-heuristics proposed for
the PFSPs include Tabu search (TS; Grabowski & Wodecki, 2004),
genetic algorithm (GA; Ruiz, Maroto, & Alcaraz, 2006), simulated
annealing (SA; Ishibuchi, Misaki, & Tanaka, 1995), variable neigh-
borhood search (VNS; Lei, 2015; Naderi & Ruiz, 2010), and iterated
greedy (IG; Ruiz & Stutzle, 2007). However, most studies on this
problem concentrate on traditional single flowshop scheduling
problems. With the increasing popularity of globalized production,
additional studies are required in order to develop different meth-
ods for dealing with the newly emerged distributed permutation
flowshop scheduling problem (DPFSP).

The DPFSP is a generalization of the classical PFSP from the tra-
ditional single factory to the current decentralized and globalized
manufacturing environment, where multiple factories might be
available for a firm. Reflecting the gap between practical applica-
tions and theory progress, the DPFSP that concerns the assignment
of jobs to various factories and their subsequent scheduling has
received increasing attention during the last decade. DPFSPs in
the multi-factory environment were first studied by Wang
(1997), considering that jobs could be distributed to identical fac-
tories for the same production process, thus achieving lower pro-
duction cost, and better risk management. Naderi and Ruiz
(2010) proposed six different alternative Mixed Integer Linear Pro-
gramming (MILP) models, two simple factory assignment rules
together with 14 heuristics based on dispatching rules, effective
constructive heuristics and two variable neighborhood descent
(VND) methods to minimize the makespan for the DPFSP. The per-
formance of the proposed algorithms was properly evaluated via
benchmark instances extended from the well-known benchmark
problem set of Taillard (1993). Later, Gao and Chen (2011) pro-
posed a GA-based algorithm, denoted by GA_LS, which utilizes an
efficient local search method to explore neighboring solutions.
Intensive experiments were conducted on the same testbed as that
used by Naderi and Ruiz (2010), and the computational results
indicate that GA_LS can obtain better solutions than all the existing
algorithms as well as the two VND algorithms (Naderi & Ruiz,
2010) for the DPFSP. Recently, Gao, Chen, and Deng (2013) pre-
sented a TS algorithm exploiting a novel Tabu strategy and an
enhanced local search method, able to achieve better performance

http://dx.doi.org/10.1016/j.cie.2017.06.025
0360-8352/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: kcying@ntut.edu.tw (K.-C. Ying).

Computers & Industrial Engineering 110 (2017) 413–423

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2017.06.025&domain=pdf
http://dx.doi.org/10.1016/j.cie.2017.06.025
mailto:kcying@ntut.edu.tw
http://dx.doi.org/10.1016/j.cie.2017.06.025
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


than the GA_LS algorithm (Gao & Chen, 2011). In the same year,
Wang, Wang, Liu, and Xu (2013) developed an estimation of distri-
bution algorithm (EDA) for solving the DPFSP. Hatami, Ruiz, and
Andrés-Romano (2013) further investigated a generalization of
DPFSPs, the distributed assembly permutation flowshop schedul-
ing problem, and proposed the VND algorithm with the demon-
strated outperformance. Although their proposal was not directly
compared with the state-of-the-art algorithms, the comparative
results with some existing heuristics demonstrate the effectiveness
of the proposed EDA in solving this problem. Next, Lin, Ying, and
Huang (2013) proposed a modified IG (MIG) algorithm for the
DPFSP, and showed its superiority over the above methods. The
best-known solutions for almost half of instances of the extended
benchmark problem set of Taillard are updated by using the MIG
algorithm. Naderi and Ruiz (2014) presented a scatter search (SS)
algorithm, which employs some advanced techniques like a refer-
ence set made up of complete and partial solutions, along with
other features like restarts and local search for the DPFSP. Their
experimental results show that the SS algorithm produces better
results than 10 existing algorithms, including the (Gao & Chen,
2011) and TS (Gao et al., 2013) algorithms, by a significant margin.
Basing their work on the IG algorithm, Fernandez-Viagas and
Framinan (2015) presented a bounded-search IG (BSIG) algorithm,
and showed that it outperforms TS (Gao et al., 2013), EDA (Wang
et al., 2013), and MIG (Lin et al., 2013) algorithms. In addition, bet-
ter upper bounds for more than one quarter of problems in the
testbed of Naderi and Ruiz (2010) are obtained using the BSIG algo-
rithm. To the best of the authors’ knowledge, BSIG is by far the
most effective meta-heuristic algorithm for solving the DPFSP to
optimize makespan.

The no-idle PFSP (NIPFSP) is a key issue in various manufactur-
ing systems, especially in fiberglass processing and foundry opera-
tions, where the setup costs of machines are so high that shutting
down and reactivating of machines is not cost-effective (Pan &
Ruiz, 2014; Saadani, Guinet, & Moalla, 2003; Tasgetiren, Pan,
Suganthan, & Buyukdagli, 2013). Therefore, most managers would
rather extend the completion time of jobs by postponing the start
of processing the first job on a given machine. This scheduling
problem was first considered and proven to be NP-Complete
(Adiri & Pohoryles, 1982). After this, some algorithms (e.g. Deng
& Gu, 2012; Kalczynski & Kamburowski, 2005; Pan & Wang,
2008) were developed for NIPFSPs. Most recently, Pan and Ruiz
(2014) extended the successful IG algorithm of Ruiz and Stutzle
(2007) to minimize the makespan of the mixed NIPFSP. The
designed algorithm is called IGPR, which considers the technique
of FRB41 algorithm (Rad, Ruiz, & Boroojerdian, 2009) for the inser-
tion neighborhoods in the phases of initialization and reconstruc-
tion, and thus provides more diversity to search better candidate
solutions. They showed the IGPR algorithm is superior to other
existing heuristics by conducting numerical comparisons of 1750
instances. In terms of meta-heuristics, IG-based algorithms have
been successfully applied to various scheduling problems
(Hatami, Ruiz, & Andrés-Romano, 2015; Pan & Ruiz, 2014; Ruiz &
Stutzle, 2007; Ying, 2008, 2012a, 2012b; Ying, Lin, & Wan, 2014),
and have consistently showed their supremacy over NIPFSP with
their tractability and superior performance in attaining near-
optimal.

Although NIPFSPs have been broadly studied over the past dec-
ades, literature searches indicate that no study has been conducted
to date on the Distributed No-idle Permutation Flowshop Schedul-
ing Problem (DNIPFSP). Therefore, this study provides the first
attempt to investigate this significant problem. The aim is simulta-
neously to assign jobs to various factories and to determine their
production sequences in each factory to minimize the makespan.
Using the three field classification scheme of Graham, Lawler,
Lenstra, and Rinnooy Kan (1979), the addressed problem can be

designated by a triplet DFmjprmu;no� idlejCmax. Since this problem
with only one factory reduces to a general NIPFSP, which is NP-
Complete (Adiri & Pohoryles, 1982), the DFmjprmu;no� idlejCmax

problem can be confidently concluded also to be NP-Complete.
To this end, this study proposes a Mixed Integer Linear Program-
ming (MILP) model, and an Iterated Reference Greedy (IRG) algo-
rithm to effectively solve it. The designed IRG algorithm has
significant improvements in the so-called perturbation mecha-
nism, acceleration of makespan calculation for neighborhoods
evaluation, and acceptance criterion of IG algorithm. The perfor-
mance of the proposed IRG algorithm is to be demonstrated by
numerical comparisons with the MILP and the state-of-the-art
IGPR algorithm, based on existing simulation instances (Naderi &
Ruiz, 2010) augmented from the Taillard benchmark problem set
(Taillard, 1993). The remainder of this paper is organized as fol-
lows. The following section formulates the investigated problem.
Section 3 offers a detailed description of the proposed IRG algo-
rithm. tion 4 presents the performance evaluations of the proposed
algorithm. Section 5 gives the conclusions of this study.

2. Problem formulation

This section defines the DFmjprmu;no� idlejCmax problem con-
sidered herein. It will offer some critical assumptions, and formu-
late the corresponding MILP model.

� The problem considers a group of f identical factories, which are
located in different areas, and share the processing responsibil-
ity of a set of n jobs.

� More than one factories, i.e. f > 1, are taken into consideration
to avoid the addressed problem become a trivial one.

� All factories have the same workflows, each with a flowshop
production system that consists of the same set of m machines
in the fixed permutation.

� A set of n jobs is to be assigned to any one of f identical factories,
and to be sequentially processed through themmachines of the
assigned factory in an identical sequence without preemption.

� There must be no idle intervals between the processing of any
consecutive jobs on each machine. That is, each machine must
process jobs without any interruption from the start of process-
ing the first job to the completion of processing the last job.

� All jobs are assumed to be ready at time zero, when needed, the
start time of the first job on a given machine should be delayed
in order to meet the no-idle requirement.

� Each machine can only process one job at a time, and the pro-
cessing time of a job at one specific machine is the same from
factory to factory.

� Any interruption during processing a job and breakdown of a
machine are ignored.

� The objective of scheduling is simultaneously to assign jobs to
various factories and to determine their production sequences
in each factory to minimize the makespan (Cmax).

Let pij, i ¼ 1; . . . ;n, j ¼ 1; . . . ;m be the processing time of job i on
machine j, and C‘jk, ‘ ¼ 1; . . . ;nk, j ¼ 1; . . . ;m, k ¼ 1; . . . ; f be the
completion time of the job at the ‘th priority on machine j of fac-
tory k, in which nk is the number of jobs processed in factory k,

such that
P f

k¼1nk ¼ n. Note that the completion time of each job,
i.e. C‘jk, is also treated as the decision variable to be optimally
determined. Let xi‘k, i ¼ 1; . . . ; n, ‘ ¼ 1; . . . ;nk, k ¼ 1; . . . ; f be the
binary decision variable to determine the assignment of job i. If
job i is assigned to the ‘th processing priority in factory k, then
xi‘k ¼ 1; otherwise, xi‘k ¼ 0. Based on the above assumptions and
defined notations, the DFmjprmu;no� idlejCmax problem can be for-
mulated as the following MIP mathematical model:
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