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a b s t r a c t

Data Envelopment Analysis (DEA) is a very effective method to evaluate the relative efficiency of
decision-making units (DMUs), which has been applied extensively to education, hospital, finance, etc.
However, in real-world situations, the data of production processes cannot be precisely measured in
some cases, which leads to the research of DEA in uncertain environments. This paper will give some
researches to uncertain DEA based on uncertainty theory. Due to the uncertain inputs and outputs, we
will give three uncertain DEA models, as well as three types of fully ranking criteria. For each uncertain
DEA model, its crisp equivalent model is presented to simplify the computation of uncertain models.
Finally, a numerical example is presented to illustrate the three ranking criteria.

� 2017 Published by Elsevier Ltd.

1. Introduction

Data envelopment analysis (DEA), as an useful management
and decision tool, has been widely used since it was first invented
by Charnes, Cooper, and Rhodes (1978). The method is followed by
a series of theoretical extensions, such as Banker, Charnes, and
Cooper (1984), Charnes, Cooper, Golany, Seiford, and Stutz
(1985), Petersen (1990), Tone (2001) and Cooper, Seiford, and
Tone (2000). More DEA papers can refer to Seiford (1994) in which
500 references are documented.

In many cases, decision makers are interested in a complete
ranking over the dichotomized classification. The researches on
ranking have come up for this reason. Over the last decade, many
literatures on ranking in DEA have been published. By evaluating
DMUs through both self and peer pressure, Sexton, Silkman, and
Hogan (1986) can attain a more balanced view of the decision-
making units. Andersen and Petersen (1993) developed the
super-efficiency approach to get a ranking value which may be
greater than one through evaluated DMU’s exclusion from the lin-
ear constraints. In the benchmark ranking method (Torgersen,
Forsund, & Kittelsen, 1996), a DMU is highly ranked if it is chosen
as a useful target for many other DMUs.

Most methods of ranking DMUs assume that all inputs and out-
puts data are exactly known. However, in real situations, such as in
a manufacturing system, a production process or a service system,
inputs and outputs are volatile and complex so that they are diffi-
cult to measure in an accurate way. Thus, people tend to use fuzzy
theory to describe the indeterminate inputs and outputs, which
motivates the fuzzy DEA. Generally speaking, fuzzy DEA method
can be catagorized into four types: the tolerance approach,
the a-level based approach, the fuzzy ranking approach and the
possibility approach (Adel, Emrouznejad, & Tavana, 2011). In the
tolerance approach (refer to Sengupta (1992)), tolerance levels on
constraint violations are defined to integrate fuzziness into the
DEA models, and the input and output coefficients can be thus
treated as crisps. The a-level based approach may be the most
popular model of fuzzy DEA. This method discretize the original
problem into a series of parametric programs in order to decide
the a-cuts of the membership function of efficiency. Related stud-
ies include Kao and Liu (2000), Entani, Maeda, and Tanaka (2002),
Liu (2008) and Angiz, Emrouznejad, and Mustafa (2012), etc. The
fuzzy ranking model is first proposed by Guo and Tanaka (2001),
and it focus on determining the fuzzy efficiency scores of DMUs
using optimization methods which require ranking fuzzy sets.
One can also refer to León, Liern, Ruiz, and Sirvent (2003), Wang
and Luo (2006) or Angiz, Tajaddini, Mustafa, and Kamali (2012)
for more concepts and information of the fuzzy ranking method.
In the possibility approach, the fuzzy DEA models are converted
to possibility linear program problem by using possibility
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measures. See Lertworasirikul, Fang, Joines, and Nuttle (2003) for
example. Other studies on fuzzy DEA include fuzzy goal program-
ming method (Sheth & Konstantinos, 2003), fuzzy random DEA
model in hybrid uncertain environments (Qin & Liu, 2010), fuzzy
rough DEA model (Shiraz, Charles, & Jalalzadeh, 2014), cross eval-
uation approach (Costantino, Dotoli, Epicoco, Falagario, &
Sciancalepore, 2012), and fuzzy clustering approach (David &
Deep, 2012), etc.

Although the fuzzy DEA models are popular and in most time
effective, it may bring some problems to the decision makers in
some cases. This is because the possibility measure defined in
fuzzy theory doesn’t satisfy duality, as explained in Liu (2012).
For this reason, an uncertainty theory was founded by Liu (2007)
in 2007, and refined by Liu (2010a) in 2010 to deal with the peo-
ple’s belief degree mathematically. A concept of uncertain variable
is used to model uncertain quantity, and belief degree is regarded
as its uncertainty distribution. As extensions of uncertainty theory,
uncertain programming was proposed by Liu (2009) in 2009,
which aims to deal with the optimal problems involving uncertain
variable. Since then, uncertainty theory was used to solve a variety
of real optimal problems, including finance (Chen & Liu, 2010; Peng
& Yao, 2010; Liu, 2013), reliability analysis (Liu, 2010b; Zeng, Wen,
& Kang, 2013), uncertain graph (Gao, 2013; Gao & Gao, 2013), etc.
As an application, this work was followed by uncertain multiobjec-
tive programming models, uncertain goal programming models
(Liu & Chen, 2013), and uncertain multilevel programming models
(Liu & Yao).

In this paper, we will assume the inputs and outputs in DEA
models are uncertain variables, and introduce some new DEAmod-
els and their ranking criteria based on uncertainty theory. The
remainder of this paper is organized as follows: Some basic con-
cept and results on uncertainty theory will be introduced in Sec-
tion 2; Section 3 will give some basic introduction to DEA
models; The method to obtain uncertainty distribution is intro-
duced in Section 4. In Section 5, we will give three uncertain DEA
models, three fully ranking criteria, as well as their equivalent
deterministic models. Finally, a numerical example will be given
to illustrate the uncertain DEA model and the ranking method in
Section 6.

2. Preliminaries

Uncertainty theory was founded by Liu (2007) in 2007 and
refined by Liu (2010a) in 2010. Nowadays uncertainty theory has
become a branch of axiomatic mathematics for modeling human
uncertainty. In this section, we will state some basic concepts
and results on uncertain variables. These results are crucial for
the remainder of this paper.

Let C be a nonempty set, and L a r-algebra over C. Each ele-
ment K 2 L is assigned a number MfKg 2 ½0;1�. In order to ensure
that the number MfKg has certain mathematical properties, Liu
(2007, 2010a) presented the three axioms:

(i) MfCg ¼ 1 for the universal set C.
(ii) MfKg þMfKcg ¼ 1 for any event K.
(iii) For every countable sequence of events K1;K2; . . ., we have

M
[1
i¼1

Ki

( )
6

X1
i¼1

MfKig

The triplet ðC;L;MÞ is called an uncertainty space. In order to
obtain an uncertain measure of compound event, a product
uncertain measure was defined by Liu (2012), thus producing
the fourth axiom of uncertainty theory:

(iv) Let ðCk;Lk;MkÞ be uncertainty spaces for k ¼ 1;2; . . . ;1.
Then the product uncertain measure M is an uncertain mea-
sure satisfying

M
Y1
k¼1

Kk

( )
¼

1̂

k¼1

MkfKkg:

An uncertain variable is a measurable function n from an uncer-
tainty space ðC;L;MÞ to the set of real numbers (Liu, 2007). In
order to describe an uncertain variable in practice, the concept of
uncertainty distribution is defined as

UðxÞ ¼ Mfn 6 xg ð1Þ
for any real number x. For example, the linear uncertain variable
n � Lða; bÞ has an uncertainty distribution

UðxÞ ¼
0; if x 6 a

ðx� aÞ=ðb� aÞ; if a 6 x 6 b

1; if x P b:

8><>: ð2Þ

An uncertain variable n is called zigzag if it has a zigzag uncer-
tainty distribution

UðxÞ ¼

0; if x 6 a

ðx� aÞ=2ðb� aÞ; if a 6 x 6 b

ðxþ c � 2bÞ=2ðc � bÞ; if b 6 x 6 c
1; if x P c

8>>><>>>: ð3Þ

denoted by Zða; b; cÞ where a; b; c are real numbers with a < b < c.
An uncertain variable n is called normal if it has a normal uncer-
tainty distribution

UðxÞ ¼ 1þ exp
pðe� xÞffiffiffi

3
p

r

� �� ��1

ð4Þ

denoted by Nðe;rÞ where e and r are real numbers with r > 0. An
uncertainty distribution U is said to be regular if its inverse function
U�1ðaÞ exists and is unique for each a 2 ð0;1Þ. The uncertain vari-
ables n1; n2; . . . ; nn are said to be independent if

M
\n
i¼1

ðni 2 BiÞ
( )

¼
n̂

i¼1

M ni 2 Bif g ð5Þ

for any Borel sets B1;B2; . . . ;Bn.

Theorem 1 (Liu, 2010a). Let n1; n2; . . . ; nn be independent uncertain
variables with regular uncertainty distributions U1;U2; . . . ;Un,
respectively. If f is a strictly increasing function, then

n ¼ f ðn1; n2; . . . ; nnÞ ð6Þ
is an uncertain variable with inverse uncertainty distribution

W�1 ¼ f ðU�1
1 ðaÞ;U�1

2 ðaÞ; . . . ;U�1
n ðaÞÞ: ð7Þ

Theorem 2 (Liu & Ha, 2010). Assume n1; n2; . . . ; nn are independent
uncertain variables with regular uncertainty distributions
U1;U2; . . . ;Un, respectively. If f ðx1; x2; . . . ; xnÞ is strictly increasing
with respect to x1; x2; . . . ; xm and strictly decreasing with respect to
xmþ1; xmþ2; . . . ; xn, then the uncertain variable n ¼ f ðn1; n2; . . . ; nnÞ
has an expected value

E½n� ¼
Z 1

0
f ðU�1

1 ðaÞ; . . . ;U�1
m ðaÞ;U�1

mþ1ð1� aÞ; . . . ;U�1
n ð1� aÞÞda

ð8Þ
provided that E½n� exists.
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