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a b s t r a c t

This article investigates a new robust criterion for the vehicle routing problem with uncertainty on the
travel time. The objective of the proposed criterion is to find a robust solution which displays better beha-
viour on a majority of scenarios, where each scenario represents a potential state of an uncertain event. In
order to highlight the robustness of the proposed approach, the new robust criterion is compared with
the classical robust criteria, such as best-case, worst-case and min-max deviation. Inspired from the
mechanism developed by B. Roy for evaluating the robustness, this paper focuses on providing two robust
conclusions for the new robust criterion: perfectly robust and pseudo robust. For the perfectly robust, the
robust criterion is evaluated by using an exact method on a set of 480 small-scale instances generated
from Solomon’s benchmark instances. For the pseudo robust, the robust criterion is evaluated by using
a metaheuristic on a set of 54 medium-scale and large-scale instances. The numerical results show that
the new approach is able to produce the robust solutions in a majority of cases.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the past five years, sustained economic growth due to the
evolution of information proves that big data technologies are able
to constantly improve the efficiency of the social network. Unfortu-
nately, many informations are often unknown or uncertain in real-
world applications, such as, the return of risk asset after one year,
the travel time for a route in tomorrow morning, etc. Therefore,
decision making under uncertainty is encountered in numerous
domains such as transportation, logistics, telecommunication, reli-
ability and production management. Despite the technological
progress of recent years, tackling some combinatorial optimization
problems with uncertainty parameters remains a challenging
topic.

Most mathematical models dispose the uncertainty by replac-
ing an uncertain data by a series of deterministic parameters, such
as, interval of variation, experience value, variance, etc. For
instance, in mathematical programming, some approaches have
been already proposed in order to proximately represent uncertain
events. From literature, two approaches can be distinguished: (i)
sensitivity analysis and (ii) stochastic optimization. The sensitivity

analysis can be regarded as a post-occupancy evaluation procedure
which aims at finding an interval of variation for each uncertain
parameter. Such an interval is used to guarantee the stability of
an optimal solution with the consideration that some parameters
of the original problem can be perturbed. In stochastic optimiza-
tion, uncertain events are characterized by their probability distri-
butions. However, the information related to each uncertain event
is generally obscure, which complicates the determination of its
probability distribution. Therefore, it is worth to try associating
each uncertain parameter with a set of values, which can also be
labelled as scenario. Each scenario corresponds to a potential value
that can be reached by an uncertain parameter. In the ideal case,
one seeks a solution which displays the best performance over
all available scenarios. Such a solution is often difficult to find or,
sometimes, does not exist. One of the goals of the robust optimiza-
tion is to develop decision criteria used to characterize the
robustness of the optimization solution. Note that the robust
optimization have been proposed for a variety of combinatorial
optimization problems (cf., the reader can be referred to Kouvelis
& Yu (1997) and Gabrel, Murat, & Thièle (2014)). In this paper,
we propose a new robust criterion for the Robust Vehicle Routing
Problem (RVRP) with uncertainty on the travel time (cf., Bertsimas
& Simchi-Levi, 1996). The proposed approach is based on the the-
oretical concept developed in Roy (2010): a solution qualified on a
majority of scenarios is never too bad.
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Vehicle Routing Problem (VRP), which is a well known NP-hard
problem, was first studied by Dantzig and Ramser (1959). An
instance of the VRP can be described as follows: given a set of cus-
tomers and a fleet of vehicles, where all vehicles are characterized
by a capacity and each of them is localized at a central depot. The
aim of the VRP is to determine the solution supplying all customers
with the minimum transport cost. In the standard version of the
VRP, the transport cost is usually valued by the travel distance.
In real-world applications, the transport cost usually strongly
depends on the travel time. Unlike the travel distance, the travel
time is often uncertain, especially for its evaluation at some future
moment. Recently, in order to develop computational models for
handling the uncertainty related to parameters of the problem, it
becomes more interesting to design robust models based on the
discrete scenarios (cf., Adida & Perakis, 2010; Han, Lee, & Park,
2013).

In this paper, the travel time is represented by a set of scenarios,
where each scenario presents a potential value of the travel time
required by the vehicle for passing a route. A solution is said to
be robust, if it is qualified according to a prefixed robust criterion.
In robust optimization models, a robust criterion is often stated as
an objective function. Therefore, finding the best solution for a
robust criterion is equivalent to determine the best solution opti-
mizing the objective function related to the robust criterion. The
robust criteria elaborated in literature are generally based on the
preferential unit risk (cf., Zymler, Kuhn, & Rustem, 2013; Zhu &
Fukushima, 2009). Among all available robust criteria collected
from literature, we cite here: the best case criterion, the worst case
criterion (cf., Solano-Charris, Prins, & Santos, 2015), the min-max
deviation criterion (cf., Aissi, Bazgan, & Vanderpooten, 2009) and
the bw-robustesse (best-worst) criterion (cf., Gabrel, Murat, & Wu,
2013).

Besides the determination of models and the development of
algorithms, another difficulty for the robust optimization is the
evaluation of the solutions (i.e., either optimum or approximate)
obtained by using different robust criteria. Roy (2010) proposed
three measures of robustness for a considered criterion, which
can be summarized as follows.

Perfectly robust conclusions : the optimality of the solu-
tion has been proven by using
an exact algorithm;

Approximately robust conclusions : the solution is approxima-
tively determined with pro-
viding the approximation
ratio;

Pseudo robust conclusions : the solution is computed by
using metaheuristic without
providing any available infor-
mation on its optimality.

Due to the high complexity of the RVRP, providing the perfectly
robust conclusion on a robust criterion becomes impractical when
the size of problem increases. Therefore, there are few papers
addressing the development of robust criteria for the family of
the vehicle routing problem. This paper attempts to propose a
mechanism for providing either the perfectly robust conclusion
or the pseudo robust conclusion for a considered robust criterion.
More precisely, the new robust criterion is evaluated on two sets
of benchmark instances. The first set contains the small-scale
instances and the second set includes the instances varied from
the medium-scale and the large-scale. On the first set, we apply
a generic exact solver (i.e., Cplex solver 12.6) to solve the problem
to its optimality and we provide the perfectly robust conclusion.
The obtained optimum solutions are compared with those pro-
vided by using classical robust criteria. On the second set, we adopt

a large neighbourhood search-based metaheuristic to approxima-
tively solve the RVRP. In order to highlight the performance of
the new robust criterion and the proposed metaheuristic, we com-
pare the obtained approximate solutions with those provided by
Cplex solver within a limited runtime.

The remainder of the paper is organized as follows. Section 2
introduces several classical criteria based on an integer linear pro-
gramming approach for the RVRP. In Section 3, we propose a new
criterion for the RVRP and give a numerical example to display its
property. Section 4 summarizes the principle of the proposed
metaheurisitic. In Section 5, the new criterion is evaluated by using
both the exact algorithm and the metaheuristic in order to provide
perfectly robust conclusions and pseudo robust conclusions.

2. Model with discrete set of scenarios

In this section, we describe some definitions and notations
which will be used in the rest of paper. Given a central depot
(noted by v0), a set of n customers V ¼ f1; . . . ;ng and a set of iden-
tical vehicles, each customer i has a quantity ci of goods to be deliv-
ered and each vehicle is characterized by a capacity C. The goal of
the VRP is to determine a list of feasible routings serving all cus-
tomers with a minimum travel distance and using a minimum num-
ber vehicles. Therefore, an instance of the VRP can be represented as
a complete graph G ¼ ðV ; EÞ, where V denotes the set of vertices
and E ¼ fði; jÞ j i; j 2 Vg the set of edges. Therefore, a standard lin-
ear program for the VRP (cf., Toth & Vigo, 2002) can be written
as follows:

ðILPvrpÞ min l�mþ
Xn
i¼1

ðt0ix0iþ ti0xi0Þþ
Xn

i¼1

Xn
j¼1

tijxij ð1Þ

s:c:
Xn

i¼1

x0i ¼
Xn

i¼1

xi0 6m; ð2Þ

Xn

i¼0

xik ¼1; 8 k¼1; . . . ;n; ð3Þ

Xn

j¼0

xkj ¼1; 8 k¼1; . . . ;n; ð4Þ

lj� liþCð1�xijÞP cj; 8 i– j¼1; . . . ;n; ð5Þ
ci 6 li 6C; 8 i¼1; . . .n; ð6Þ
m2N; li 2N; 8 i¼0; . . . ;n; xij 2f0;1g; 8 i– j¼0; . . . ;n; ð7Þ

where, tij presents the travel time from customer i to j; li is the cur-
rent load of the vehicle when customer i is served; the decision vari-
able xij ¼ 1 if edge ði; jÞ is chosen in the route, 0 otherwise; m
presents the number of used vehicles. The objective function (1)
aims at minimizing simultaneously the number of used vehicles
and the total travel time. The parameter l measures the impacts
of minimizing the number of used vehicles in the objective function.
Inequality (2) ensures that the number of vehicles which depart
from (or return to) the depot cannot exceed m. Constraints (3)
and (4) are used to ensure the property of the cycle, where a cycle
departs from and returns to the same depot. As a single route is rep-
resented by a single cycle, constraints (5) are used to eliminate all
subtours. Constraint (6) is used to ensure the capacity of constraint
of the vehicle. Finally, constraint (7) guarantees the integrality of all
decision variables.

In literature, constraints (5) are referenced as Miller-Tucker-
Zemlin (MTZ) subtour elimination constraints, which are usually
considered as weak subtour elimination constraints (cf., Miller,
Tucker, & Zemlin, 1960). In contrast to MTZ, Dantzig-Fulkerson-
Johnson (DFJ) subtour elimination constraints are known by the
community as strong subtour elimination constraints (cf.,
Dantzig, Fulkerson, & Johnson, 1954). DFJ constraints are based
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