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ABSTRACT

A risk based tolerance synthesis approach is based on ISO9001:2015 quality standard’s risk based think-
ing. It analyses in-process data to discover correlations among regions of input data scatter and desired or
undesired process outputs. Recently, Ransing, Batbooti, Giannetti, and Ransing (2016) proposed a quality
correlation algorithm (QCA) for risk based tolerance synthesis. The quality correlation algorithm is based
on the principal component analysis (PCA) and a co-linearity index concept (Ransing, Giannetti, Ransing,
& James, 2013). The uncertainty in QCA results on mixed data sets is quantified and analysed in this
paper.

The uncertainty is quantified using a bootstrap sampling method with bias-corrected and accelerated
confidence intervals. The co-linearity indices use the length and cosine angles of loading vectors in
a p-dimensional space. The uncertainty for all p-loading vectors is shown in a single co-linearity index
plot and is used to quantify the uncertainty in predicting optimal tolerance limits. The effects of
re-sampling distributions are analysed. The QCA tolerance limits are revised after estimating the uncer-
tainty in limits via bootstrap sampling. The proposed approach has been demonstrated by analysing
in-process data from a previously published case study.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Risk based tolerance synthesis

The clause 6.1 of 1S09001:2015 quality standard requires
organisations to continually improve the process by enhancing
the occurrence of desired process outputs and reducing or prevent-
ing the instances when the process has produced undesired results.
Except for robust processes, the variation in process inputs may
lead to deviation from expected or desired results. The relationship
between process inputs and outputs is normally too complex for
the tolerance synthesis problem to be modelled by the underlying
physics alone. Firstly, the governing equations used to model the
physics may not describe the real model accurately and secondly,
we may not even know the underlying physics sufficiently (Lewis
& Ransing, 2000; Lewis, Ransing, Pao, Kulasegaram, & Bonet,
2004; Pao, Ransing, Lewis, & Lin, 2004; Postek, Lewis, Gethin, &
Ransing, 2005). In a continuously monitored manufacturing envi-
ronment, the synthesis of in-process data can help process engi-
neers to discover subtle relationships among process inputs and
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outputs (Lewis & Ransing, 1997). Tolerance synthesis is the process
of determining allowable variation in products and processes in
order to meet the quality requirements (Li, Kokkolaras,
Papalambros, & Hu, 2008). For a multi-process manufacturing sys-
tem, it is essential that the variability in all process inputs (includ-
ing interactions among process inputs) is analysed to study the
variation in one or more process outputs. The tolerance synthesis
is usually based on a mathematical model that describes the vari-
ation of the process inputs (Ding, Jin, Ceglarek, & Shi, 2005). A pen-
alty matrix approach is used to estimate the deviation from
expected results (Ransing, Giannetti, Ransing, & James, 2013). To
embed the risk based thinking in a tolerance synthesis problem,
process responses are categorised into three categories (i) desired,
(ii) unacceptable and, (iii) a middle region between the two cate-
gories. A zero penalty value is assigned to the desired response
and a 100 penalty value is given for the unacceptable process
response. A process response in the middle region is assigned a
penalty value between zero and hundred. A correlation between
factor values and penalty values for a given response is discovered
using a principal component analysis (PCA) based co-linearity
index (CLI) plot (Ransing et al., 2013). The length and angle of each
loading vector is calculated in a reduced p-dimensional subspace
and is used in a CLI plot. The quality correlation algorithm (QCA)
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(Ransing, Batbooti, Giannetti, & Ransing, 2016) discovers optimal
tolerance limits by projecting scores on correlated factors and
responses. The scores, bounded between a factor direction and
the corresponding response direction in a CLI plot, are used to cal-
culate new tolerance limits for the corresponding factor. For quan-
titative variables, the range of factor values corresponding to
chosen scores defines a new tolerance limit. On the other hand,
the optimal and avoid categories for categorical variables are
determined by calculating the percentage of occurrences for a cor-
responding category in the collected scores vector. The obtained
projected scores vector leads to an optimal percentage of occur-
rences if the variable is correlated with low penalty values. For
an avoid range, the variable correlates with high penalty values.
It is suggested that these new tolerance limits be included in a
modified process failure modes effect analysis (PFMEA) table in
order to «create a reusable organisational knowledgebase
(Batbooti, Ransing, & Ransing, 2015).

The number of in-process observations, available for undertak-
ing a tolerance synthesis project, is normally very small (~50-
100). The number of input and output variables are of the similar
size of number of observations (~50-100) (Ransing et al., 2013).
The small sample size can affect the reliability of model predic-
tions, and hence a measure needs to be developed to quantify
uncertainty in the model. In the tolerance synthesis context, boot-
strapping is based on the notion that the in-process data is repre-
sentative of the entire population of the data set as the sample size
increases to infinity. The QCA estimates population parameters
such as the upper and lower tolerance limits for each factors. The
novelty and originality of this work is in extending the algorithm
proposed by Timmerman, Kiers, and Smilde (2007) for quantifying
the uncertainty in the QCA. The bootstrap parameters used by
Timmerman et al. (2007) are different to those used in the QCA.
Resampling from the in-process data set is used to imitate the sam-
pling process from the population. The bootstrap parameter distri-
bution is used to quantify the uncertainty by calculating standard
errors and confidence intervals. The revised upper and lower toler-
ance limits of the QCA are derived from the bootstrap parameter
values using the weighted mean formulation proposed by Grela
(2013) and Finch (2009).

1.2. Uncertainty estimation with a bootstrap resampling

Timmerman et al. (2007) have compared the estimation of con-
fidence intervals using the bootstrap approach as well as the
asymptotic approach. It was shown that the bootstrap approach
was better suited for predicting uncertainty and hence the confi-
dence intervals. The methodology for calculating standard errors
and confidence intervals in bootstrap procedures is discussed
widely in the literature (Efron, 1977; Efron & Tibshirani, 1993;
Hastie, Tibshirani, & Friedman, 2009; Wehrens, Putter, &
Buydens, 2000).

A PCA bootstrap method has been used to find the variances of
PCA loadings (Chatterjee, 1984; Lambert, Wildt, & Durand, 1990,
1991). A thousand bootstrapped samples were generated with
replacement to determine stopping criteria for choosing number
of PC’s (Jackson, 1993). Further studies on the finding of the num-
ber of retained PCs have been discussed in the literature (Besse,
1992; Daudin, Duby, & Trecourt, 1988; Peres-Neto, Jackson, &
Somers, 2005).

Smith and Gemperline (2002) compared two parametric boot-
strap methods for analysing small data sets in order to improve
the estimation of misclassification rates of microcrystalline
cellulose.

A non-parametric bootstrap method was used in an exploratory
factor analysis to estimate results of Procrustes rotation to a target
pattern matrix (Raykov & Little, 1999). Bootstrap confidence inter-

vals were estimated for scores and loading values, as well as the
global clusters in PCA, to assess the uncertainty (Babamoradi, van
den Berg, & Rinnan, 2013). The study was conducted on two small
datasets.

A bootstrap based method is proposed to enhance QCA results
by estimating uncertainty in the algorithm for solving risk based
tolerance synthesis problems. Table 1 illustrates the symbols used
in the paper. The proposed uncertainty estimation method is
described in Section 2. A study of one thousand bootstrapped sam-
ples is discussed in Section 3 and Section 4 concludes the paper.

2. Bootstrap uncertainty estimation based on the QCA
2.1. The quality correlation algorithm (QCA)

In a given timeframe, each occurrence of process result is
recorded and assessed as desired or undesired process outcome.
The deviation from the expected results quantified with a penalty
value. For a continuous monitoring environment, during the same
timeframe the factor values are normally measured at a much
higher frequency rate. The median, the average of top the 5% of val-
ues and the average of the bottom 5% of values is determined for
each factor using values collected in the timeframe and uniquely
associated with the penalty value for the given timeframe. In the
7Epsilon context, this dataset is referred to as an equal frequency
rate data set. This dataset is stored in matrix X and is referred to
as the in-process data matrix with m number of observations and
n process variables. The process variables include categorical and
quantitative factors and one or more process responses. The data
pre-treatment proposed by Giannetti et al. (2014), and shown in
Table 2, is applied to the in-process data matrix X to transform this
matrix to XT. As shown in Fig. 1, this is the first step of the QCA. The
second step applies the PCA to the transformed in-process data

Table 1
Nomenclature.

se Boot strap standard error

a The acceleration or skewness constant

2o The bias correction

0 The static of interest

B Number of bootstraps

D, Diagonal matrix containing the square roots of eigenvalues

Ds Diagonal matrix containing the standard deviations of the columns of
XT

E Error matrix

HB Higher the better penalty value settings

L Loading matrix

LB Lower the better penalty value settings

LU Lower (minimum) value of x),

ne Number of correlated parameters resulted from applying CLI

n Length of vector x},

Q Is the number of original categorical variables

R Response

sj Standard deviation of factor j

4 The scores vector containing scored bounded between the loading
vector j direction and the response direction

T Projected score matrix

T Score Matrix

L Tolerance limit for a factor j

ur Upper (maximum) value of xj,

Vv Matrix of eigenvectors containing eigenvectors as column vectors
ordered by greatest eigenvalues

X Original data matrix with (m x n) dimensions, with m is the number
of observations and n number of variables

X, Vector with (o: either optimal or avoid) depending on direction of
variable

Xgecon  Reconstruct matrix X from PCA model parameters

XT Data matrix after pre-treatment

z Dummy variable taking binary value one if the categorical variable

has been observed and zero otherwise
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