
Integrating estimation of distribution algorithms versus Q-learning into
Meta-RaPS for solving the 0-1 multidimensional knapsack problem

Arif Arin Ph.D. a, Ghaith Rabadi Ph.D. Professor b,⇑
aMiddle East Technical University, Ankara, Turkey
b Engineering Management & Systems Engineering, Old Dominion University, Engineering Systems Building, Room 2102, Norfolk, VA 23529, United States

a r t i c l e i n f o

Article history:
Available online 27 October 2016

Keywords:
Machine learning
Estimation of distribution algorithms
Q-learning
Meta-RaPS
0-1 multidimensional knapsack problem

a b s t r a c t

Finding near-optimal solutions in an acceptable amount of time is a challenge when developing sophis-
ticated approximate approaches. A powerful answer to this challenge might be reached by incorporating
intelligence into metaheuristics. We propose integrating two methods into Meta-RaPS (Metaheuristic for
Randomized Priority Search), which is currently classified as a memoryless metaheuristic. The first
method is the Estimation of Distribution Algorithms (EDA), and the second is utilizing a machine learning
algorithm known as Q-Learning. To evaluate their performance, the proposed algorithms are tested on
the 0-1 Multidimensional Knapsack Problem (MKP). Meta-RaPS EDA appears to perform better than
Meta-RaPS Q-Learning. However, both showed promising results compared to other approaches pre-
sented in the literature for the 0-1 MKP.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

With the growing complexity of today’s large scale problems,
using exact optimization methods has become more difficult and
more time consuming. Due to computational efficiency concerns,
the need to find near-optimal solutions in an acceptable amount
of time requires using heuristic approaches; however, heuristics
are vulnerable for falling into local optima far from the optimum.
Metaheuristics confront this challenge by adding strategies and
mechanisms to the construction and local search algorithms in
existing heuristics to escape local optima. A more effective perfor-
mance may be obtained by incorporating computational intelli-
gence (CI) into these heuristics.

In the problem solving arena, the definition of intelligence
emerges in metaheuristics via memory and learning. Learning,
according to Fogel (1995), is an intelligent process in which the
basic unit of mutability is the idea. ‘‘Good” adaptive ideas are
maintained, much as good genes increase in a population, while
poor ideas are forgotten. Similarly, memory and learning mecha-
nisms in metaheuristics can learn and remember ‘‘good” features
related to the search process to make it possible to create high
quality solutions for optimization problems. Glover and Laguna
(1997) introduced a classification framework for metaheuristics

based on three design choices: the use of adaptive memory, the
type of neighborhood exploration used, and the number of current
solutions carried from one iteration to the next. The metaheuristic
classification notation can be illustrated in the form a|b|c. If the
metaheuristic has adaptive memory, the first field (a) will be A,
and M if the method is memoryless. Depending on the neighbor-
hood mechanism, the second field (b) will be N for somehow sys-
tematic neighborhood search, and S for using random sampling.
The third field (c) can be 1 for a single-solution approach or P for
a population-based approach with population size of P. Tabu
Search (TS) was among the first metaheuristics to explicitly use
memory, and Glover and Laguna (1997) presented a more sophis-
ticated version of TS to include longer term memory with associ-
ated intensification and diversification strategies. The authors
defined this approach as Adaptive Memory Programming (AMP)
because it is based on exploiting the strategic memory compo-
nents. Taillard, Gambardella, Gendreau, and Potvin (2001)
sketched the following algorithm of AMP based on the common
features of the methods that use these strategic memory
components:

(1) Initialize memory.
(2) Until stopping criteria are met, do:

(a) generate a temporary solution s using data stored in the
memory;

(b) improve s by implementing local search, s0; and
(c) update the memory using data brought by s0.
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In the literature there are various learning approaches in meta-
heuristics that show different performance levels (Arin & Rabadi,
2012a). There are also successful hybrid applications in which
metaheuristics are empowered by intelligent approaches to
improve their effectiveness, such as in TS with linear programming
(Flisberga, Lidéna, & Rönnqvist, 2009), Genetic Algorithms (GA)
(Thamilselvan & Balasubramanie, 2009), Simulated Annealing
(SA) (Yeh, Chu, Chang, & Lin, 2011), and Evolutionary Algorithms
(EA) (Wu, Wang, & Lü, 2015); GA with adaptive local search
scheme (YoungSu, Chiung, & Daeho, 2009); Evolutionary Program-
ming (EP) with fuzzy systems (Tan & Lim, 2011) and Reinforce-
ment Learning (Huaxiang & Jing, 2008); Ant Colony Optimization
(ACO) with fuzzy systems (Yeong-Hwa, Chia-Wen, Chin-Wang,
Hung-Wei, & Jin-Shiuh, 2012); and Particle Swarm Optimization
(PSO) with Memetic Algorithm (Hu, YukunBao, & Xiong, 2014),
Artificial Bee Colony (Li, Wang, & Zheng, 2015), ACO and 3-Opt
algorithms (Mahi, Baykan, & Kodaz, 2015). Such frameworks store
and utilize various information related to search history to reach
high quality solutions. Blum, Puchinger, Raidl, and Roli (2011) pre-
sented a survey on hybrid metaheuristics in combinatorial
optimization.

In this paper, we will examine the performance of two well
known learning approaches when integrated into Meta-RaPS
(Meta-heuristic for Randomized Priority Search): Estimation of
Distribution Algorithms (EDA) as a stochastic learning approach,
and Q-learning as a machine learning approach. Meta-RaPS has
been generating very promising solutions when applied to opti-
mization problems and is currently classified as a memoryless
metaheuristic with no incorporated memory nor learning mecha-
nisms. To reveal the performances of these proposed algorithms,
the 0-1 Multidimensional Knapsack Problem (MKP), which is a
special case of the general linear 0-1 integer programming problem
with nonnegative coefficients, will be used as test bed.

The 0-1 MKP is the generalized form of the classical knapsack
problem (KP). In KP there is a knapsack with an upper weight limit
b, and a set of n items with different profits cj and weights aj per
item j. The problem is to select the items from the set such that
the total profit of the selected items is maximized without exceed-
ing the upper weight limit of the knapsack b. If m knapsacks exist,
the problem becomes the MKP in which each knapsack has a differ-
ent upper weight limit bi, and an item j has a different weight aij for
each knapsack i. The objective is to find a set of items with maxi-
mal profit such that the capacity of each knapsack is not exceeded
(Gallardo, Cotta, & Fernández, 2009). The MKP can be formulated
as in the Eqs. (1)–(3):

Maximize
Xn
j¼1

cjxj: ð1Þ

Subject to
Xn
j¼1

aijxj 6 bi; i ¼ 1; . . . ;m; j ¼ 1; . . . ;n: ð2Þ

xj 2 f0;1g; j ¼ 1; . . . ;n ð3Þ

where x is a vector of binary variables such that xj = 1 if item j is
selected, and xj = 0 otherwise. In the literature it is assumed that
profits, weights and capacities are positive integers. However, they
can be easily extended to the case of real values (Martello & Toth,
1990).

The MKP is often used as a platform to evaluate new meta-
heuristics, and there are two main reasons for this academic inter-
est. First, the 0-1 MKP is a special version of the well-known
constrained integer programming problems, and also a subprob-
lem of many general integer programs. According to Fréville
(2004), the renewed interest in the research community in compu-
tational integer programming has intensified the use of MKP
benchmarks. The theoretical interest arises mainly from their sim-

ple structure which allows exploitation of a number of combinato-
rial properties and, more complex optimization problems to be
solved through a series of knapsack-type subproblems (Martello
& Toth, 1990). From the practical point of view, the MKP can model
many industrial situations, such as project selection, cargo loading
and capital budgeting, which is the first context of MKP developed
by Lorie and Savage (1955) and Manne and Markowitz (1957). Sec-
ond, due to its well-known NP-Hardness, many researchers choose
the 0-1 MKP as a test bed for their new heuristics. Although the
MKP is a straightforward generalization of the single case, the
new model is quite different when several constraints are taken
into account.

Algorithms proposed in the literature to solve MKPs can be
grouped into three classes: exact, heuristic and metaheuristic algo-
rithms. Exact techniques include Lagrangian methods and surro-
gate relaxation techniques, special enumeration techniques and
reduction schemes, and branch-and-bound. The exact approaches
evolved around the same time of the development of the 0-1
MKP, and spanned the Lagrangian and surrogate relaxation tech-
niques, special enumeration techniques, reduction schemes, and
the branch-and-bound method (Varnamkhasti, 2012). Glover
(1965) replaced the original constraints by one surrogate con-
straint. Greenberg and Pierskalla (1970) applied the first principal
handling of surrogate constraints in general mathematical pro-
gramming. Fréville (2004) claimed that, since the Lagrangean
relaxation method is not suitable for handling the homogeneous
MKP structure, the surrogate relaxation method is more beneficial
than the Lagrangean relaxation. Balas (1965) applied implicit enu-
meration techniques to resolve the 0-1 linear programs, and Shih
(1979) proposed the first linear programming-based branch-and-
bound technique taking advantage of the special structure of the
MKP. Marsten and Morin (1977) combined dynamic programming
and branch-and-bound approaches for solving the MKP. Gavish
and Pirkul (1985) demonstrated a faster branch-and-bound
approach examining problems with seven constraints and 80 vari-
ables. Constraint programming techniques integrated with integer
programming is another developing research area for solving
mixed-integer programming problems in the context of MKP
(Oliva, Michelon, & Artigues, 2001). Wilbaut and Hanafi (2009)
proposed several convergent algorithms to solve a series of small
sub-problems of 0-1 MKP generated by relaxations.

Although these exact approaches were proposed to present
good upper and lower bounds, these methods can only solve small
and medium size instances optimally. Therefore, for solving MKPs
instances of large size, several heuristics and metaheuristic tech-
niques have been developed. Hillier (1969) presented the first
multi-stage algorithms for the MKP; the first stage identifies a
route leading from the LP solution to other adjacent solutions per-
taining to the integer viable region and the second stage traverses
this route to find a better possible integer solution. The last stage
employs local search to enhance the current solution by modifying
one variable or more at the same time. This first step of this search
strategy was improved later by Glover (1989) as a concept called
Path Relinking. Loulou and Michaelides (1979) developed a
method for the MKP starting from the origin and assigning ones
to the values of the parameters in accordance with declining ratios
until additional variables violate feasibility. Balas and Martin
(1980) proposed the so-called ‘‘Pivot and Complement” method,
a LP-based procedure for the MKP to solve a small sub-set of exist-
ing items to reach a high possibility of finding a global optimum in
the core, and next to enhance the 0–1 solution gained in pivoting.
Pirkul (1987) showed a faster and comparable technique for solv-
ing the MKP containing a descent method for determining the sur-
rogate constraints. Lee and Guignard (1988) developed a multi-
stage technique for solving the MKP tuned with user-defined vari-
ables that manage the trade-off between time of computation and
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