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a b s t r a c t

A hybrid finite element model based on F-Trefftz kernels (fundamental solutions) is formulated for

analyzing Dirichlet problems associated with two-dimensional nonlinear Poisson-type equations

including nonlinear Poisson–Boltzmann equation and diffusion–reaction equation. The nonlinear force

term in the Poisson-type equation is frozen by introducing the imaginary terms at each Picard iteration

step, and then the induced Poisson problem is solved by the present hybrid finite element model

involving element boundary integrals only, coupling with the particular solution method with radial

basis function interpolation. The numerical accuracy of the present method is investigated by

numerical experiments for problems with complex geometry and various nonlinear force functions.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The nonlinear Poisson-type equation written by

@2u

@X2
1

þ
@2u

@X2
2

¼ f ðX1,X2,uÞ in OAR2
ð1Þ

is the governing equations for many physical problems including
heat conduction, mass transfer, seepage, electric and magnetic
fields, and chemical reaction. In the nonlinear equation men-
tioned above, u(X1,X2) is the scalar potential at a given field point
(X1,X2), f is a generalized force function related to the unknown
potential u, and O is the two dimensional bounded domain of the
problem under consideration.

The complete boundary value problems should consist of the
governing equation (1) and the following Dirichlet boundary
conditions:

u¼ u on Gu ð2Þ

where an over bar denotes the specified potential.
Owing to the nonlinear behavior of the partial differentiable

equation (PDE) under consideration, the theoretical analysis has
been proved to be considerably difficult, especially for problems
with irregular geometries and non-uniform boundary conditions.
To study the nonlinearity in complex solution domain, it is a long
history in resorting to numerical solutions. So far, different

numerical techniques, including finite element method (FEM)
[1], boundary element method (BEM) [2–4], finite difference
method (FDM) [5], the hybrid Trefftz finite element method
(HT-FEM) [6], the method of fundamental solution (MFS)
[7–11], the locally boundary integral equation (LBIE) method
[12], Kansa method with radial basis function (RBF) interpolation
[13,14], were developed for solving the nonlinear Poisson-type
potential problems consisting of Eqs. (1) and (2). Among them,
the HT-FEM has recently been paid more attention in the past
decades [6,15–18], because it has some advantages over the
conventional FEM and boundary element method (BEM). For
example, it possesses versatile element construction and can
capture the variation of singular fields or stress concentration
by employing suitable interpolation kernels. More discussion on
this topic can be found in literatures [17,18].

As an alternative to the HT-FEM, the hybrid finite formulation
with F-Trefftz functions or fundamental solutions as interpolating
kernel functions within the elements has been established for
analyzing heat conduction and elastic problems [19–21]. The
method was known as HFS-FEM for distinguishing the presented
model from HT-FEM. In the HFS-FEM, the fundamental solutions
(F-Trefftz functions), instead of T-complete functions (Trefftz
functions), are used to construct the interior field, and indepen-
dent boundary frame field is approximated by conventional shape
functions. A new variational functional was constructed to guar-
antee the inter-element continuity, link the two fields and
establish the final force–displacement equations. The use of
fundamental solutions can convert the domain integral in the
variational functional to element boundary integrals. It is worth

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/enganabound

Engineering Analysis with Boundary Elements

0955-7997/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.enganabound.2011.04.008

n Corresponding author.

E-mail address: qinghua.qin@anu.edu.au (Q.-H. Qin).

Engineering Analysis with Boundary Elements 36 (2012) 39–46

www.elsevier.com/locate/enganabound
dx.doi.org/10.1016/j.enganabound.2011.04.008
mailto:qinghua.qin@anu.edu.au
dx.doi.org/10.1016/j.enganabound.2011.04.008


noting that no singular integrals are involved in the HFS-FEM,
although the fundamental solutions are employed. It is because
the source points used for the evaluation of fundamental solution
are placed outside the element of interest as was done in the MFS.
Thus, the source point and field point never overlap during the
computation. Clearly, the present HFS-FEM inherits the advan-
tages of HT-FEM and simultaneously can alleviate or remove
some drawbacks of HT-FEM such as the properly selection of the
number of terms of T-complete functions, the complicated coor-
dinate transformation needed in the HT-FEM, and the relatively
complicated expressions by comparison with the fundamental
solutions which usually contains one term only, rather than a
series containing infinite terms, and are available for most
physical problems.

In this paper, we focus on the extension of the developed
HFS-FEM to the nonlinear Poisson-type problems. The nonlinear
term appearing in the right-hand side of the differential equation
is first frozen by introducing the Picard iteration process, and then
in each iteration step, radial basis functions are employed to
approximate the part of particular solutions, and the HFS-FEM is
formulated to determine the homogeneous potential distribution
with modified boundary conditions. Both the iteration residual
and the inter-iteration difference are used to assess the conver-
gent performance.

The paper is arranged as follows. The solution procedure
including the iterative method and the presented hybrid finite
element formulation is stated in Section 2. In Section 3, we
consider some numerical examples including nonlinear Poisson–
Boltzmann equation and nonlinear diffusion–reaction equation.
A comparison of the numerical results from HFS-FEM is made
with those from either analytical approach or other numerical
methods. Finally, some conclusions are presented in Section 4.

2. Solution methodology

In order to develop a generalized algorithm for the nonlinear
boundary value problem (BVP) consisting of Eq. (1) and Dirichlet
boundary condition (2), the Picard method of iteration imple-
mented by Chen et al. [11] for the two-dimensional Dirichlet
problem is employed for solving nonlinear Poisson-type equa-
tions with HFS-FEM. the desired solutions are obtained by
assuming u at the start of the iterations and solving the lineariz-
ing equation at each level of iteration. For this purpose, we
construct the following linear iteration process to evaluate the
potential distribution at the current iteration step (m) by freezing
the nonlinear term appeared in the right-hand term f which is
evaluated using the results at previous iteration (m�1) step
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¼ f ðX1,X2,uðm�1ÞÞ in OAR2
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It is obvious that the sequence {u(m)} is expressed in terms of
{u(m�1)}, which is known from previous iteration step, for each
mðm¼ 1,2,3,. . .Þ, and u(0) represents any initial guess. To complete
the iteration and obtain convergent results, the iteration con-
vergent criterion is set by controlling both the maximum residual
related to the nonlinear governing equation
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and the inter-iteration difference

:uðmÞ�uðm�1Þ:
1
re2 ð5Þ

where :�:
1

represents the infinite norm, and e1 and e2 are
iteration tolerances, respectively.

Generally, the treatment of nonhomogeneous term f involves the
domain integral. To remove the domain integral from the element
stiffness equation, the radial basis functions are employed in
this work.

Before introducing radial basis functions, it is observed that
the linearity of Eq. (3) makes its solution to be divided into two
major parts

u¼ uhþup ð6Þ

where the nonhomogeneous solution, also named as particular
solution, up is required to satisfy

r
2up ¼ f ðX1,X2,uðm�1ÞÞ ð7Þ

without any boundary conditions, and the homogeneous solution
uh is obtained by solving the following linear system with
modified boundary condition:

r
2uh ¼ 0 in O

uh ¼ u�up on Gu

(
ð8Þ

2.1. Particular solution

In order to obtain the particular solution, the radial basis
functions are used here to approximate the induced fictitious
function f, that is

f ðX1,X2,uðm�1ÞÞ ¼
XNI

k ¼ 1

akjkðX1,X2Þ ¼ fugfag ð9Þ

where NI denotes the number of interpolation points in the
domain of interest, ak are unknown interpolating coefficients,

jk(X1,X2) be radial basis function centered at the point ðXk
1 ,Xk

2Þ,

and u
� �
¼ fj1 j2 . . . jNI g, fag ¼ fa1 a2 . . . aNI g

T
are

corresponding basis vector and coefficient vector, respectively.
Radial basis functions are usually expressed in terms of the

Euclidian distance, so they can work well in any dimensional
space and does not increase the computational difficulty when
the dimension of a problem increases. In most numerical ana-
lyses, the commonly used RBFs include linear polynomial, thin
plate spline (TPS) and multiquadric (MQ). Among them, the linear
polynomial and thin plate spline are piecewise smooth in the
space, while the MQ is infinitely smooth. Due to the high
sensitivity to shape parameter in MQ, we will not employ MQ
in the paper, although it can achieve good accuracy in some cases.

For the case of thin plate spline (TPS) basis, the interpolation
kernel has the following expression:

jkðX1,X2Þ ¼ r2 lnr ð10Þ

where r represents the Euclidean distance of the given point
(X1,X2) from a fixed point ðXk

1 ,Xk
2Þ in the domain of interest

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1�Xk

1Þ
2
þðX2�Xk

2Þ
2

q
ð11Þ

In the standard dual reciprocity procedure, it is reasonable to
assume that the particular solution is approximated by

upðX1,X2Þ ¼
XNI

k ¼ 1

akckðX1,X2Þ ¼ fwgfag ð12Þ

so that a relationship between the basis jk and the particular
kernel ck

r
2ckðX1,X2Þ ¼jkðX1,X2Þ ð13Þ

exists. In Eq. (13), w
� �
¼ fc1 c2 . . . cNI g represents the set of

approximated particular kernel.
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