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a b s t r a c t

This paper discusses the use of the Wave Based Method for the analysis of time-harmonic three-

dimensional (3D) interior acoustic problems. Conventional element-based prediction methods, such as

the Finite Element Method, are most commonly used for these types of problems, but they are

restricted to low-frequency applications. The Wave Based Method is an alternative deterministic

technique which is based on the indirect Trefftz approach. Up to now, this method’s very high

computational efficiency has been illustrated mainly for two-dimensional (2D) problem settings,

allowing the analysis of problems at higher frequencies. The numerical validation examples presented

in this work shows that the enhanced computational efficiency of the Wave Based Method in

comparison with conventional element-based methods is kept when the method is extended to 3D

case with and without the presence of material damping.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the context of optimising the design of mechanical systems,
the acoustical and vibrational comfort of a product has taken up a
predominant place among more traditional design criteria such as
strength, durability, maintainability, etc. With the development of
modern computer systems, the exponential increase in computa-
tional power and the availability of advanced and robust simulation
techniques, the use of detailed numerical models for functional
performance evaluation has become an indispensable part of many
contemporary design processes. The use of these so-called virtual

prototypes significantly reduces the time and the cost needed to
assess a single design possibility and allows designers to predict the
behaviour of their products without the need to construct physical
prototypes. In this way, the number of design alternatives which can
be fully explored increases and a better assessment of the perfor-
mance impact of several design options can be made prior to taking
important and irreversible design decisions.

In the scope of analysing the interior acoustic behaviour of
products and processes, element-based approaches such as the
Finite Element Method (FEM) and the Boundary Element Method
(BEM) are by far the most commonly applied deterministic
numerical prediction techniques for the analysis of time-harmo-
nic acoustic problems.

In the FEM [1], the entire problem domain is divided into a
(often very large) number of discrete elements. Within these
elements, the acoustic pressure field is approximated using a
superposition of simple, usually lower-order polynomial shape
functions. As the excitation frequency increases, however, an
increasingly refined discretisation is needed to suppress the
associated interpolation and pollution errors [2] due to the
approximative nature of the applied shape functions. This require-
ment results in very large numerical models, the solution of which
involves a prohibitively large amount of computational resources.
Hence, the FEM is limited to low-frequency applications [3].

As compared to the FEM, the BEM [4] reformulates the
governing Helmholtz partial differential equation as a mathema-
tically equivalent boundary integral formulation of the problem,
such that only the boundary of the considered domain has to be
discretised. Within each boundary element, the distributions of
the boundary variables are approximated using an expansion of
locally defined simple, polynomial shape functions. Enforcement
of the boundary conditions results in a small numerical model, as
compared to FE models, which can be solved for the nodal values
on the discretised boundary. Once these nodal values are known,
the field variables inside the domain may be reconstructed by
applying the boundary integration formulations in a postproces-
sing step. As compared to the fast assembly of frequency-
independent, real valued, sparse FE matrices, the construction of
the frequency-dependent, complex, densely populated BE
matrices is very time consuming. In this way, the smaller model
size does not necessarily result in an enhanced computational
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efficiency, so that the practical use of the BEM is also restricted to
low-frequency applications [5].

Whereas the FEM, due to the domain partitioning into small
elements, is more suited for the analysis of problems in bounded
domains – although there are several techniques which allow the
analysis of problems in unbounded media [6,7] – the BEM is more
applicable to the latter class of problems, but can hardly compete
with the FEM for solving interior acoustic problems. However,
some recent developments which increase the computational
efficiency of the BEM, such as the fast multi-pole BEM (FEMBEM)
[8,9], the wave boundary elements [10,11] and the wave number
independent BEM [12–14], may prove to make the BEM more
competitive for the analysis of bounded problems.

In recent years, a vast amount of research efforts has been spent
on the development of possible extensions of the FEM in order to
minimise or even eliminate the pollution error and, as a result,
increase the practical application range of the method to higher
frequencies. Process optimisation techniques, such as adaptive FE
refinement [2,15,16], reduced numerical integration [17–20] and
efficient numerical solvers [21,22], do not modify the basic FE
formulations, but focus on the optimisation of the numerical
process in order to obtain an enhanced computational efficiency.

Another way to reduce the computational efforts involved
with solving large FE problems is by applying domain decom-
position techniques, such as component mode synthesis [23],
automated multi-level substructuring [24,25] and finite element
tearing and interconnecting [26,27]. Due to the application of a
divide and conquer strategy, these domain decomposition techni-
ques are perfectly suited for implementation in a parallel com-
puting environment.

Stabilised FE methods, such as the Galerkin least squares FEM
[28], the Galerkin gradient least squares FEM [29] and the quasi-
stabilised FEM [30], reduce the pollution error of the FEM by
modifying the weak form of the integral problem formulation.

Instead of modifying the integral problem formulation to
reduce the pollution error, the family of generalised methods
tries to reduce the pollution error by introducing a priori knowl-
edge about the solution in the numerical FE scheme through the
enrichment of the conventional polynomial shape function basis.
Two such methods are the partition-of-unity FEM, in the litera-
ture also referred to as the generalised FEM [31,32], and the
element-free Galerkin method [33,34]. The ultra weak variational
formulation [35,36] also incorporates a priori known information
of the solution in the numerical scheme but embeds it into a
novel variational formulation.

Another class of improved FEMs are the so-called multi-scale
methods. These methods consider the solution to be a super-
position of a large scale and a fine scale component. The large
scale component is usually approximated with polynomials,
while for the small scale component wave-like functions are
applied. The wave-like functions incorporate a priori known
information about the solution. Methods which are classified as
multi-scale methods are the discontinuous enrichment method
[37] and the related discontinuous Galerkin method [38].

Many of these improvements to the FEM have recently also
found their way into the BEM research community. In this way,
the BEM and its derivations like the FMBEM can also profit from
the increased computational efficiency provide by e.g. dedicated
preconditioned iterative solvers [39], multi-domain interface
treatment [40], domain decomposition methods [41,42] and the
use of hierarchical matrices [43,44].

Apart from the FEM, BEM and all the methods derived from their
basic concepts, there is another family of methods, the so-called
Trefftz methods [45], which distinguish themselves from the FEMs
by their choice of shape and weighting functions [46]. Instead of
applying approximation functions, exact solutions of the governing

differential equations are used for the expansion of the field
variables. Examples of such Trefftz-based methods which have been
recently applied for the study of time-harmonic acoustic and
structural dynamic problems are the Wave Based Method (WBM)
[47], the Variational Theory of Complex Rays (VTCR) [48–50] and the
Method of Fundamental Solutions [51,52]. Since the functions which
are applied in the WBM to expand the dynamic pressure field are
exact solutions of the governing Helmholtz equation, no residual
error is involved with respect to the governing partial differential
equation inside the problem domain.1 However, the functions may
violate the boundary conditions. By minimising the residuals of the
boundary conditions in a Galerkin weighted residual formulation, a
small system of algebraic equations is obtained, which can be solved
for the contribution factors of the expansion functions. Due to the
small model size and the enhanced convergence characteristics of
the WBM, it has a superior numerical performance as compared to
the FEM. As a result, problems at higher frequencies can be
addressed. The WBM has been applied successfully for the analysis
of two-dimensional (2D) interior and exterior (vibro-) acoustic
problems [46,53,54], for the structural dynamic analysis of flat plates
[55,56] and for the analysis of poroelastic materials [57]. Recent
research has focussed on the treatment of semi-infinite problems
[58] and on the extension of the geometrical flexibility of the method
through the use of spline-based boundary definitions [59], the
combination of the WBM and FEM in a hybrid FE–WBM [60–62]
and the development of a novel multi-level modelling approach for
multiple scattering and inclusion problems [63,64]. The principles
underlying the WB modelling paradigm have also been applied to
efficiently model three-dimensional (3D) interior vibro-acoustic
systems [65] and exterior acoustic scattering and radiation problems
[66]. The main focus of the research in the former paper is on the
theoretical derivation of multi-physical vibro-acoustic coupling
formulation in fully Trefftz-based numerical models and the analysis
of the stability thereof. The aim of the second work proposes a
suitable and effective set of 3D acoustic wave functions for the
description of the propagation of sound fields in unbounded acoustic
media exterior to a spherical truncation geometry. In this paper,
these developments are complemented by an in-depth analysis of
the properties of a WB modelling approach for 3D interior acoustic
problem domains. Through a comparison of this method with linear
and quadratic FE approaches, the method’s computational efficiency
and its potential for mid-frequency numerical analysis of both
damped and undamped acoustic cavities is revealed. Moreover, an
empirically derived general guideline for determining the required
number of WB approximation functions as a function of the problem
geometry and the analysis frequency is presented.

Section 2 introduces a mathematical description of a time-
harmonic acoustic problem. Section 3 introduces the WBM meth-
odology and lists the formulations for interior 3D acoustic
problems. Section 4 compares the properties of the WBM with those
of classical element-based modelling techniques and highlights the
main advantages and limitations of the methodology. Section 5
illustrates the beneficial properties of the proposed method for the
study of the acoustic behaviour of a 3D acoustic cavity.

2. Definition of a Helmholtz problem in a bounded domain

Consider a steady-state bounded acoustic problem, as shown
in Fig. 1. A closed boundary surrounds a bounded fluid domain V,

1 It should be noted here that stating that there is no residual error with

respect to the governing partial differential equation does not mean that there is

no error inside the problem domain. However, the error inside the domain is

purely related to the error on the boundary conditions and not due to a violation

of the governing equation.
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