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a b s t r a c t

The Pareto (or nondominated set) for a multiobjective optimization problem is often of nontrivial size,
and the decision maker may have a difficult time establishing objective criterion weights to select a solu-
tion. In light of these issues, clustering or partitioning methods can be of considerable value for pruning
the Pareto set and limiting the decision to a few choice exemplars. A three-stage approach is proposed. In
stage one, a variance-to-range measure is used to normalize the criterion function values. In stage two,
maximum split partitioning and p-median partitioning are each applied to the normalized measures, thus
producing two partitions of the Pareto set and two sets of exemplars. Finally, in stage three, the union of
the exemplars obtained by the two partitioning methods is accepted as the final set of exemplars. The
partitioning methods are compared within the context of multiobjective allocation of a cross-trained
workforce to achieve both operational and human resource objectives.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The Pareto set of a multiobjective optimization problem con-
sists of all nondominated solutions. Denoting w as a solution to a
multiobjective problem, P as the number of objective criteria,
fp(w) as the objective function value of criterion p (for 1 � p � P),
and assuming that each criterion should be maximized, a solution
w0 dominates w if [[fp(w0) � fp(w) " 1 � p � P] ^ [fp(w0)– fp(w)"
1 � p � P]]. In other words, for w0 to dominate w, the criterion val-
ues for w0 must be as good or better than those of w for each crite-
rion, and strictly better for at least one criterion. If w is not
dominated by any w0 – w, then it is nondominated and a member
of the Pareto set.

The number of solutions in the Pareto set of a multiobjective
programming problem can be large and, therefore, difficult for
decision makers to process. In such cases, it is desirable to prune
the Pareto set to extract several solutions as exemplars for further
consideration. During the past 10 years, there has been a resur-
gence of interest in the development of methods for pruning Pareto
sets (Aguirre, Taboada, Coit, & Wattanapongsakorn, 2011; Eusebio,
Figueira, & Ehrgott, 2014; Guo, Wong, Li, & Ren, 2013; Jornada &
Leon, 2016; Kulturel-Konak, Coit, & Baheranwala, 2008; Taboada
& Coit, 2007, 2008; Vaz, Paquete, Fonseca, Klamroth, & Stiglmayr,
2015). Jornada and Leon (2016) classify these Pareto set reduction
(PSR) methods as primarily falling into one of two categories: (1)

ranking methods and (2) clustering methods. Taboada and Coit
(2007, 2008) have indicated that clustering methods are perhaps
more appropriate when decision makers do not have an a priori
idea for a suitable set of decision weights. We focus on clustering
methods for PSR throughout the remainder of this paper.

The use of clustering methods for PSR dates back (at least) to
the work of Morse (1980), Steuer and Harris (1980), and Törn
(1980). Morse (1980), for example, evaluated several hierarchical
clustering algorithms, as well as block clustering methods for the
Pareto set. More recently, Taboada and Coit (2007, 2008) applied
K-means partitioning to the standardized (or normalized) objective
function values of multiobjective optimization problems. Aguirre
et al. (2011) described the use of tree-based clustering methods
for PSR. Vaz et al. (2015) presented an approach that used three
location-based models for PSR in a biobjective context.

Our approach in this paper most closely corresponds to the
work of Taboada and Coit (2007, 2008) because we also partition
standardized objective function values using K-means, as well as
other partitioning methods. Succinctly, there are four dimensions
to our contribution to the literature. First, we begin with a careful
description of the process of standardizing the competing objective
functions and obtaining a proximity representation among the
solutions in the Pareto set. Second, we discuss four partitioning
methods for PSR: (i) maximum split partitioning, (ii) minimum
diameter partitioning, (iii) K-means, and (iv) p-median
partitioning. Our discussion highlights important advantages and
disadvantages of each of these methods. Third, we present a new
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three-stage partitioning process for PSR. Fourth, we present a com-
parison of alternative partitioning approaches within the frame-
work of a multiobjective workforce allocation problem.

The first stage of the proposed partitioning approach for PSR
uses a variance-to-range standardization procedure to normalize
the criterion function values. This procedure has been shown to
substantially outperform z-score and range transformations with
respect to recovery of cluster structure (Steinley & Brusco, 2008).
In the second stage, maximum split partitioning and p-median par-
titioning are applied to the normalized measures to establish two
partitions and two sets of exemplars. In the third stage, the union
of the exemplars obtained by the two partitioning methods is
selected as the final set of exemplars. Our introduction of p-
median partitioning for PSR is noteworthy because, relative to
the other three methods, p-median partitioning has the distinct
advantage of directly providing an exemplar for each cluster.
Moreover, exact solution of p-median problems is more computa-
tionally feasible than exact solution of K-means problems. The
decision to augment p-median partitioning with maximum split
partitioning is predicated on the fact that, unlike the other three
methods considered herein, split is a between-cluster measure.
Therefore, it tends to be useful for isolating well-separated solu-
tions on the Pareto frontier.

Although the partitioning method for PSR can be used for many
different types of multiobjective optimization problems, we focus
on applications pertaining to the allocation of a cross-trained
workforce. Brusco (2015) recently developed an algorithm for gen-
erating the entire Pareto set for a biobjective workforce allocation
problem associated with the competing objectives of service utility
and assignment desirability. However, his method did not provide
formal guidance for the decision maker in terms of choosing a solu-
tion from the Pareto set, which contained 100 or more solutions in
some instances. In light of this problem, as well the fact that deci-
sion makers would tend not to have an appropriate set of decision
weights in advance, a partitioning approach is apt to be particu-
larly useful for PSR in this context.

Section 2 focuses on data partitioning for the Pareto set. This
includes the pre-processing of the data, descriptions of the various
methods, choosing the number of clusters, and choosing an exem-
plar from each cluster. Section 3 presents a brief review of the
workforce allocation literature and defines the underlying multi-
objective optimization problem. Section 4 provides a biobjective
workforce allocation example to illustrate the results obtained
from each of the methods in Section 2, and proposes the three-
stage approach to capitalize on the strengths and mitigate the
weaknesses of methods. An application to a triobjective problem
is provided in Section 5. The paper concludes in Section 6 with a
summary, discussion of limitations, and suggestions for future
research.

2. Partitioning the Pareto set

2.1. Standardizing the data to be clustered

A description of a data clustering approach for the Pareto set
begins with the definition of X = [xip] as an N � P matrix of objec-
tive function values, where N is the number of solutions in the Par-
eto set, indexed S = {1, 2, . . . , N}, and P is the number of objective
criteria. Although clustering methods could be applied directly to
X, this is generally not advised. If two or more of the objective cri-
teria are measured on markedly different scales, then those criteria
with larger measurements are apt to dominate the clustering solu-
tion, effectively rendering the criteria with smaller measures as
superfluous to the clustering process. For this reason, the

importance of standardizing clustering variables to assure proper
recovery of cluster structure is well recognized in the clustering lit-
erature (Steinley & Brusco, 2008), and standardization has also
been advised when using data clustering to prune the Pareto set
(Taboada & Coit, 2007, 2008). In our application, we standardize
X using a measure developed by Steinley and Brusco (2008, pp.
83–84) that defines the relative clusterability of a variable based
on it variance, Var(p), conditioned by its range, Range(p). The speci-
fic measure for each variable is:

1p ¼
½12� VarðpÞ�
ðRangeðpÞÞ2

; 81 6 p 6 P; ð1Þ

and the relative clusterability index, RC(p), for each variable is
obtained as follows:

RCðpÞ ¼ 1p
min16p6Pf1pg

; 81 6 p 6 P: ð2Þ

The RC(p) measures are subsequently used to transform the col-
umns of X using the process:

Step 1. Transform each column of X to z-scores by differencing
each variable from its mean and dividing by the standard devi-
ation. Define this N � P matrix as Z = [zip].
Step 2. Let Range(zp) indicate the range of the z-scores for
variable p. Also, define Range(zmin) = [Range(zp):p:
fp = min16p6Pf1pg].
Step 3. Compute the variance-to-range standardized data as the
N � P matrix, Y = [yip], from the RC(p) indices as follows:

yip ¼ zip

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RCðpÞ½Rangeðzmin�2

½RangeðzpÞ�2

vuut ; 8i 2 S; 81 6 p 6 P: ð3Þ

The next step is to establish an N � N dissimilarity matrix, D =
[dij], among the N solutions in the Pareto set based on Y. This is
accomplished using squared Euclidean distance:

dij ¼
XP

p¼1

ðyip � yjpÞ2; 8i 2 S; 8j 2 S: ð4Þ

Squared Euclidean distance was selected because it is the foun-
dation for popular clustering methods, namely Ward’s (1963)
method and K-means (Forgy, 1965; Steinhaus, 1956). Although this
is the measure of dissimilarity we selected to implement herein,
alternative measures such as Euclidean (not squared), Manhattan,
or Mahalanobis distance would also be viable.

2.2. Selecting a partitioning method

The next step is to partition the Pareto set based on the infor-
mation in D. Two desirable properties of a partition are: (i) that
each pair of clusters is well-separated, and (ii) that the solutions
within each cluster are homogeneous. Although there are many
possibilities for constructing partitions, we limit our discussion
to four methods: (1) maximum-split partitioning (MSP), (2)
minimum-diameter partitioning (MDP), (3) K-means, and (4)
p-median partitioning.

2.2.1. Maximum-split partitioning (MSP)
The goal of MSP is to partition the indices of the Pareto set into

K subsets (S1, S2, . . . , SK) such that the smallest pairwise dissimilar-
ity measure between two solutions that are not in the same subset
is maximized. Mathematically, the MSP can be stated as follows:

max : C1 ¼ min
16k<l6K

min
ði2Sk ;j2SlÞ

ðdijÞ
� �

; ð5Þ
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