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a b s t r a c t

For the two-agent scheduling on an unbounded serial-batch machine with batch delivery cost, Yin et al.
(2016) presented a comprehensive study, where the objective of each agent (A or B) is calculated by his
scheduling cost plus his batch delivery cost proportional to the number of batches of this agent. Among
their results, they provided a polynomial-time algorithm for minimizing the objective of agent A subject
to the constraint that the objective of agent B does not exceed a given threshold value, where the criterion
of agent A is the total completion time plus batch delivery cost and the criterion of agent B is the max-
imum lateness plus batch delivery cost. We show in this paper that their algorithm is incorrect by a coun-
terexample and the algorithm presented in Kovalyov et al. (2015) for solving the same problem without
batch delivery cost can be used to solve the problem in Yin et al. (2016) in polynomial time. We further
study two corresponding Pareto scheduling problems and provide polynomial-time algorithms.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Two-agent scheduling was first introduced in Baker and Smith
(2003) and Agnetis, Mirchandani, Pacciarelli, and Pacifici (2004),
and now has developed into a hot topic in scheduling research.
Recently, two-agent scheduling on batch machines are studied in
Li and Yuan (2012), Fan, Cheng, and Li (2013), Kovalyov, Soukhal,
and Oulamara (2015), and Yin, Wang, Cheng, Wang, and Wu
(2016).

We consider the two-agent scheduling on an unbounded serial-
batch machine with batch delivery cost, which was first introduced
and studied in Yin et al. (2016). In this scheduling model, two com-
peting agents A and B will process their jobs on an unbounded
serial-batch machine. For each G 2 fA;Bg, we use
JG ¼ fJG1 ; JG2 ; . . . ; JGnGg to denote the set of jobs of agent G, and more-

over, the jobs in JG are called the G-jobs. All jobs in J A [ JB are avail-
able for scheduling from time zero onwards. Each job JGj (G 2 fA;Bg)
has a processing time pG

j and a due date dG
j . Let n ¼ nA þ nB denote

the total number of jobs. The machine used for processing the n
jobs is an unbounded serial-batch machine. This means that the
jobs are processed in batches and each batch can contain arbitrary
number of jobs only of a common agent, where the processing time

of a batch is given by the total processing time of the jobs in the
batch and the jobs of the same batch complete simultaneously at
the completion time of the batch. Whence a batch is completed
in the machine it is delivered immediately and a delivery cost will
be payed. For G 2 fA;Bg, a batch which just contains some G-jobs is
called a G-batch. Each G-batch is associated with a sequence-
independent batch setup time sG and batch delivery cost uG inde-
pendent of the number of jobs in the batch. All numerical data are
assumed to be nonnegative integers. For simplicity, we assume the
number of vehicles is sufficiently large and the delivery of batch is
instantaneous.

Given a schedule r, for each job JGj , where G 2 fA;Bg and

j 2 f1;2; . . . ;nGg, we use CG
j ðrÞ to denote the completion time of

job JGj and use LGj ðrÞ ¼ CG
j ðrÞ � dG

j to denote the lateness of job JGj .

Let f GðrÞ be the scheduling cost of agent G of schedule r and
mGðrÞ the number of batches of the G-jobs in schedule r. When

no confusion can occur, we simply write CG
j ðrÞ, LGj ðrÞ, f GðrÞ and

mGðrÞ as CG
j , L

G
j , f

G and mG, respectively, by omitting r. Then the
objective function of agent G to be minimized is given by

f G þmGuG.
For the bi-criteria scheduling on an unbounded serial-batch

machine to minimize two objective functions f and g, we use the
following notations for the expression of problems related to our
research.
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� CP(U) problem 1js-batchjf : g 6 U. This is the constrained
scheduling problem which aims at finding a schedule r so that
f ðrÞ is minimized subject to the constraint condition gðrÞ 6 U,
where U is a threshold value of g.
� PP problem 1js-batchj#ðf ; gÞ. This is the Pareto scheduling prob-
lem which aims at finding all the Pareto points for minimizing f
and g and for each Pareto point a corresponding Pareto optimal
schedule.

Related to this paper is the work in Yin et al. (2016), in which
the authors presented a comprehensive study for the CP(U) prob-

lems 1js-batchjf A þmAuA : f B þmBuB 6 U, where f A and f B are
some regular scheduling criteria. Among the achievements in Yin
et al. (2016), the authors presented a polynomial-time algorithm,
called Sum-Max-DP Algorithm (shortly, algorithm SMDP), for prob-

lem 1js-batchjPC A
j þmAuA : LBmax þmBuB 6 U.

When the delivery cost is not considered, i.e., uA ¼ uB ¼ 0, the

CP(U) problems 1js-batchjf A þmAuA : f B þmBuB 6 U degenerate

into 1js-batchjf A
: f B 6 U, which were comprehensively studied in

Kovalyov et al. (2015). Especially, Kovalyov et al. (2015) presented

an Oðnn2
An

2
BÞ-time algorithm for problem 1js-batchjPC A

j : LBmax 6 U
by enumerating all possible choices of mA and mB.

By a counterexample, we show in Section 2 that the algorithm
SMDP presented in Yin et al. (2016) for problem
1js-batchjPC A

j þmAuA : LBmax þmBuB 6 U is incorrect. Then we
show that the algorithm presented in Kovalyov et al. (2015) for

problem 1js-batchjPC A
j : LBmax 6 U can be used to solve problem

1js-batchjPC A
j þmAuA : LBmax þmBuB 6 U in Oðnn2

An
3
BÞ time. In

Section 3, we further study two Pareto scheduling problems

1js-batchj#ðPC A
j ; L

B
maxÞ and 1js-batchj#ðPC A

j þmAuA; L
B
maxþ

mBuBÞ, which are related to the research in Section 2. By guessing
and enumerating the possible maximum lateness of agent B, we
show that the two Pareto scheduling problems are solvable in
Oðnn4

An
5
BÞ time.

2. The constrained optimization

The algorithm SMDP in Yin et al. (2016) can be described as
follows.

SMDP: For problem 1js-batchjPC A
j þmAuA : LBmax þmBuB 6 U.

� Input: nA, nB, U, uA, uB, p
A ¼ fpA

1 ;p
A
2 ; . . . ;p

A
nA
g, pB ¼ fpB

1;p
B
2; . . . ;p

B
nB
g,

and dB ¼ fdB
1; d

B
2; . . . ; d

B
nB
g.

� Step 1. Re-index the A-jobs in the SPT order and B-jobs in the
EDD order.
� Step 2. [Preprocessing] Set Sð0;0Þ ¼ fð0;0;0;0;0Þg and SðjA; jBÞ ¼
£ for jA ¼ 0;1; . . . ;nA; jB ¼ 0;1; . . . ;nB with jA þ jB P 1.
� Step 3. [Generation]
For jA ¼ 0 to nA do
– For jB ¼ 0 to nB do

⁄ For each ðFA;mA;mB; q; xÞ 2 SðjA; jBÞ do
� Case 1: If jA þ 1 6 nA and x ¼ 1, then set
SðjA þ 1; jBÞ  SðjA þ 1; jBÞ [ fðF 0A;mA;mB; q; xÞg, where
F 0A ¼ FA þ ðnA þ jB � qÞpA

jAþ1;

� Case 2: If jA þ 1 6 nA, then set SðjA þ 1; jBÞ  
SðjA þ 1; jBÞ [ fðF 0A;mA þ 1;mB; jA þ jB; 1Þg, where
F 0A ¼ FA þ ðnA � jAÞðsA þ pA

jAþ1Þ þuA;

� Case 3: If jB þ 1 6 nB; x ¼ 2 and PðjA; jB þ 1Þ� dB
jAþjB�qþ1þ

mAsA þmBðsB þuBÞ 6 U, then set SðjA; jB þ 1Þ  
SðjA; jB þ 1Þ [ fðF 0A;mA;mB; q; xÞg, where F 0A ¼ FAþ
ðnA � jAÞpB

jBþ1;

� Case 4: If jB þ 1 6 nB and PðjA; jB þ 1Þ� dB
jBþ1þ

mAsA þ ðmB þ 1ÞðsB þuBÞ 6 U, then set SðjA; jBþ1Þ 
SðjA; jBþ1Þ[fðF 0A;mA;mBþ1; jAþ jB;2Þg, where F 0A ¼ FAþ
ðnA � jAÞðsB þ pB

jBþ1Þ;

⁄ Endfor
[Elimination]

⁄ For any two states ðFA;mA;mB; q; xÞ and ðF 0A;m0A;m0B; q; xÞ in
SðjA þ 1; jBÞwith FA 6 F 0A;mA 6 m0A and mB 6 m0B, eliminate
the second one from SðjA þ 1; jBÞ.

⁄ For any two states ðFA;mA;mB; q; xÞ and ðF 0A;m0A;m0B; q; xÞ in
SðjA; jB þ 1Þwith FA 6 F 0A;mA 6 m0A and mB 6 m0B, eliminate
the second one from SðjA; jB þ 1Þ.

⁄ Endfor

– Endfor
Endfor
� Step 4. [Result] If SðnA;nBÞ ¼£, then report that the instance is
infeasible. Otherwise, the optimal solution value is given by
F�A ¼minfFAjðFA;mA;mB; q; xÞ 2 SðnA;nBÞg and the optimal solu-
tion can be found by backtracking.

However, in the processing of Case 4 of each iteration, to ensure
that the resulted schedule meets the upper bound of the objective
function value of agent B, the algorithm only checks whether the
objective value of the current B-batch is no more than U or not.
Since in Case 4, the number of B-batch increases by one, the objec-
tive value of previous B-batch should increase by uB accordingly.
This can lead to the upper bound of the objective function value
of agent B being not satisfied for pervious B-batch. In the following,
we present a counterexample to further show the invalidity of the
algorithm SMDP.

A counterexample: In the instance, we have nA ¼ 1 and

nB ¼ 2; sA ¼ uA ¼ sB ¼ dB
1 ¼ 0;uB ¼ pA

1 ¼ M (a sufficient large num-

ber), pB
j ¼ 1 (j ¼ 1;2), dB

2 ¼ 3M, and U ¼ M þ 2.
For this instance, the above algorithm SMDP generates a sched-

ule r which schedules JB1 in the time interval ½0;1�; J A1 in the time

interval ½1;M þ 1�, and JB2 in the time interval ½M þ 1;M þ 2�. Then
LBmaxðrÞ ¼ 1. Since uB ¼ M and the B-jobs are partitioned into two
batches in r, i.e., mBðrÞ ¼ 2, it is not hard to verify that
LBmaxðrÞ þmBðrÞuB ¼ 2M þ 1 > U. Thus, the schedule r generated
by algorithm SMDP is even not feasible.

In fact, in an optimal schedule, to ensure the objective value of
agent B does not exceed U, the two jobs of agent B have to be
assigned in one batch and processed in the time interval ½0;2�,
and job J A1 is scheduled at last in the time interval ½2;M þ 2�. Such
an optimal schedule, denoted r�, has LBmaxðr�Þþ
mBðr�ÞuB ¼ M þ 2 ¼ U and

P
C A
j ðr�Þ þmAðr�ÞuA ¼ M þ 2. This

means that the algorithm SMDP presented in Yin et al. (2016) for

problem 1js-batchjPC A
j þmAuA : LBmax þmBuB 6 U is invalid.

To amend the above flaw, we will show that the algorithm
presented in Kovalyov et al. (2015) for problem

1js-batchjPC A
j : LBmax 6 U can be used to solve problem

1js-batchjPC A
j þmAuA : LBmax þmBuB 6 U in Oðnn2

An
3
BÞ time. We

first introduce an auxiliary problem.

� RCPðU; bA; bBÞ problem 1js-batch;ðbA; bBÞj
P

C A
j : LBmax 6 U. This

is the restricted version of the CP(U) problem

1js-batchjPC A
j : LBmax 6 U, in which we require that each feasible

schedule has just bA A-batches and bB B-batches, i.e., mAðrÞ ¼ bA

and mBðrÞ ¼ bB for every feasible schedule r, where 1 6 bA 6 nA

and 1 6 bB 6 nB. Moreover, we use FðU; bA; bBÞ to denote the opti-
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