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a b s t r a c t

A control chart is an important statistical tool for monitoring disturbances in a statistical process, and it is
richly applied in the industrial sector, the health sector and the agricultural sector, among others. The
Shewhart chart and the Cumulative Sum (CUSUM) chart are traditionally used for detecting large shifts
and small shifts, respectively, while the Combined Shewhart-CUSUM (CSC) monitors both small and large
shifts. Using auxiliary information, we propose new CSC (MiCSC) charts with more efficient estimators
(the Regression-type estimator, the Ratio estimator, the Singh and Tailor estimator, the power ratio-
type estimator, and the Kadilar and Cingi estimators) for estimating the location parameter. We compare
the charts using average run length, standard deviation of the run length and extra quadratic loss, with
other existing charts of the same purpose and found out that some of the MiCSC charts outperform their
existing counterparts. At last, a real-life industrial example is provided.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The most widely known quality control chart, the Shewhart
chart, was proposed by Shewhart (1924). It detects shifts in a pro-
duction process by signaling when a process goes beyond some
particular threshold limits known as control limits. Shewhart chart
makes use of the information when the process goes out of the
control limits and ignores the information when the process is
within the control limits, i.e. in-control. Due to this fact, the chart
is sensitive for detecting large shifts (or disturbances) in a process.
Roberts (1959) and Page (1954) proposed the Exponentially
Weighted Moving Average (EWMA) chart and the Cumulative
Sum (CUSUM) chart, respectively, which make use of the informa-
tion when the process gets out-of-control and even when the pro-
cess is in-control, hence, these charts are sensitive to small and
moderate shifts in a process. Other modifications of these charts
have been proposed to increase their efficiency in terms of time,
cost, and simplicity of usage and expression.

The plotting statistic of CUSUM chart assumes normality. What
if the plotting statistic is not normally distributed or its normality
is altered? Nazir, Riaz, Does, and Abbas (2013) answered these
questions by suggesting some charts which are not normally dis-
tributed or their normality has been altered. They aimed at finding

charts that perform practically well under normal, contaminated
normal, non-normal, and special cause contaminated parent cases.
Based on mean, median, Hodge-Lehman, midrange and trimean
statistics, they proposed different CUSUM charts for phase II mon-
itoring of the location parameter and computed their performance
measure using the average run length (ARL) approach. Abujiya, Lee,
and Riaz (2015) suggested the use of well-structured sampling
techniques, such as the double ranked set sampling, the median-
double ranked set sampling, and the double-median ranked set
sampling, to significantly improve the performance of the CUSUM
chart, without inflating the false alarm rate. They compared their
proposed charts with some existing charts and found out that their
charts perform better.

Due to the advancement in technology and industrial processes,
emphasis has been made on the implementation of the CUSUM
chart to existing Levey-Jennings or Shewhart control charts
(Westgard, Groth, Aronsson, & de Verdier, 1977). These can be
done manually using control charts or in computerized quality
control systems. Westgard et al. (1977) applied this concept to
improve quality control in clinical chemistry. A combination of
the Shewhart chart and CUSUM chart was observed by Lucas
(1982), after which some scholars improved the chart by proposing
more efficient charts. Combined Shewhart-CUSUM (hereafter
called ‘‘CSC”) for location parameter can be optimized over the
entire mean shift range by adding an extra parameter (w), known
as the exponential of the sample mean shift, to the structure of the
CSC. This will improve its performance and it will not increase the
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difficulty level of understanding and implementing the chart (Wu,
Yang, Jiang, & Khoo, 2008). The CSC, which has a wide range of
applications, attracts the attention of Environmentalists, and it is
the only quality control chart directly recommended by the United
States Environment Protection Agency for intra-well monitoring
(Gibbons, 1999). Abujiya, Riaz, and Lee (2013) replaced the tradi-
tional simple random sampling in the plotting statistic of the CSC
with ranked set sampling.

The control statistics of the classical Shewhart, CUSUM, and CSC
charts for monitoring location parameter are based on the usual
unbiased simple mean estimator ð�x ¼ ð1=nÞPn

i¼1xiÞ for estimating
the population mean. However, in the field of sample survey, dif-
ferent authors have suggested some estimators for estimating the
population mean, which are more efficient than the simple mean
estimator, in terms of their mean squared error (MSE). Some of
these estimators require the use of auxiliary variable(s) which
are cheap, easy and affordable to get, and also, with known popu-
lation parameters (Cochran, 1977). According to Cochran (1977),
the correlation between the study variable and the auxiliary vari-
able will serve as an advantage to increase the precision of estima-
tion. Sukhatme and Sukhatme (1970) proposed the regression
estimator for estimating the mean, while the power ratio-type esti-
mator and modified ratio-type estimator were suggested by
Srivastava (1967) and Ahmad, Abbasi, Riaz, and Abbas (2014),
respectively. Interested readers can see Singh and Tailor (2003),
Kadilar and Cingi (2004, 2006a, 2006b), Gupta and Shabbir
(2008) and Adebola, Adegoke, and Sanusi (2015) for different forms
of a transformed ratio estimator.

Zhang (1992) suggested the cause-selecting control chart, while
Riaz (2008b) popularised the use of auxiliary information at the
estimation stage, for monitoring dispersion parameter. He con-
cluded that the chart is better than the R chart, the S chart and
the S2 chart. Furthermore, Riaz (2008a) suggested similar chart
for location parameter estimation, which was also superior to the
Shewhart chart, the regression chart, and the cause-selecting con-
trol chart. Assuming stability of parameters, Ahmad, Riaz, Abbasi,
and Lin (2014) proposed new Shewhart charts based on auxiliary
information for non-cascading processes. The charts monitor a dis-
persion parameter in an efficient way. The superiority of the charts
over competing charts was shown using the ARL, relative average
run length (RARL) and extra quadratic loss (EQL) under t and nor-
mal distributed process environment. Similar work was also done
for location parameter monitoring, and it was found out that there
is an improvement in the detection ability of Shewhart chart based
on the level of correlation between the concerned variables (Riaz,
2015).

Since most of the estimators are more efficient than the simple
mean estimator based on a simple random sample, their introduc-
tion to the plotting statistic(s) of the Shewhart chart, the CUSUM
chart, and the CSC chart would result in efficient control charts.
Hence, this study aims at optimizing the CSC chart by introducing
some efficient estimators to its plotting statistics. These estimators
use auxiliary information in the sampling stage. This is helpful
whenever there is no information about the population of the vari-
able of interest, but there is information about a closely related
variable(s) which is cheap and affordable to get. Cheap and afford-
able in the sense that little or no resources (money or time) are
needed to get the extra information. In statistical process control,
one of the relevancies of introducing an auxiliary variable can be
found in the platinum refinery, where the quality of the process
generally depends on the quantity of platinum metal that is corre-
lated with the magnitude of other metals (Ahmad, Abbasi, et al.,
2014; Hawkins, 1991).

The rest of this article is organized as follows: Location estima-
tors and their properties are explained in the next section; The

general structure of the proposed charts is explained in Section 3;
Section 4 explains the performance measures for evaluating the
proposed charts and compares the proposed charts with their
existing counterparts; Section 5 gives an illustrative example;
and finally, conclusions and recommendations are given in
Section 6.

2. Location estimators and their properties

We assume that a process has a quality characteristic of interest
X and an auxiliary quality characteristic A. Let the population
parameters of X and A, respectively, be represented as �X and �A
for the means; r2

X and r2
A for the variances; CX ¼ rX=�X and

CA ¼ rA=�A for the coefficient of variations; b2ðXÞ and b2ðAÞ for the
coefficient of kurtoses; rXA for the covariance between X and A;
and qXA for the correlation coefficient. Let the sample statistics of
X and A, respectively, be represented as �x and �a for the means; s2x
and s2a for the variances; cx and ca for the coefficient of variations;
sxa for the covariance; and rxa for the correlation coefficient. Let xi
and ðxi; aiÞ be univariate and bivariate sample respectively, where
i ¼ 1; 2; . . . ; n and n ¼ sample size. From the sample statistics, we

have �x ¼Pn
i¼1xi=n, �a ¼Pn

i¼1ai=n, s2x ¼Pn
i¼1ðxi � �xÞ2=ðn� 1Þ,

s2a ¼Pn
i¼1ðai � �aÞ2=ðn� 1Þ, cx ¼ sx=�x, ca ¼ sa=�a and rxa ¼ sxa=sxsa.

Based on this introduction, some efficient estimators with one aux-
iliary variable for estimating the mean of a quality process charac-
teristic, assuming sampling with replacement, are presented in
Eqs. (1)–(10) with their respective bias (B) andMSE. The estimators
differ from one another in terms of their efficiency and simplicity
of their structures. They perform better than the simple mean esti-
mator for different cases. The regression estimator performs better
than the simple mean estimator when there is a non-zero correla-
tion between the study variable and the auxiliary variable. In addi-
tion, the ratio estimator is more efficient than the simple mean
estimator when the correlation between the study variable, and
the auxiliary variable is greater than 0.5. Further information about
the estimators can be found in Srivastava (1967), Cochran (1977),
Singh and Tailor (2003) and Kadilar and Cingi (2004).

(i) The Simple Random Sampling Estimator (Cochran, 1977)

M1 ¼
Xn
i¼1

xi=n ð1Þ

with BðM1Þ ¼ 0 and MSE ðM1Þ ¼ r2
X=n.

(ii) The Regression-Type Estimator (Difference Estimator)
(Cochran, 1977)

M2 ¼ �xþ bXAð�A� �aÞ ð2Þ
where bXA ¼ �qXArX=rA, with BðM2Þ ¼ 0 and MSE ðM2Þ ¼
r2

Xð1� q2
XAÞ=n.

The bias and the MSE of the next estimators are given up to the
first order approximation.

(iii) The Ratio Estimator (Cochran, 1977)

M3 ¼ �x
�A
�a

ð3Þ

with BðM3Þ ¼ �X C2
A � qXACXCA

� �
and MSEðM3Þ ¼ �X2

�
C2
X þ C2

A�
2qXACXCA

�
.

(iv) The Singh and Tailor Estimator (Singh & Tailor, 2003)

M4 ¼ �x
�Aþ qXA

�aþ qXA

� �
ð4Þ
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