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a b s t r a c t

There is an extensive literature in data envelopment analysis (DEA) aimed at evaluating the relative effi-
ciency of a set of decision-making units (DMUs). Conventional DEA models use definite and precise data
while real-life problems often consist of some ambiguous and vague information, such as linguistic
terms. Fuzzy sets theory can be effectively used to handle data ambiguity and vagueness in DEA prob-
lems. This paper proposes a novel fully fuzzified DEA (FFDEA) approach where, in addition to input
and output data, all the variables are considered fuzzy, including the resulting efficiency scores. A lexico-
graphic multi-objective linear programming (MOLP) approach is suggested to solve the fuzzy models pro-
posed in this study. The contribution of this paper is fivefold: (1) both fuzzy Constant and Variable
Returns to Scale models are considered to measure fuzzy efficiencies; (2) a classification scheme for
DMUs, based on their fuzzy efficiencies, is defined with three categories; (3) fuzzy input and output tar-
gets are computed for improving the inefficient DMUs; (4) a super-efficiency FFDEA model is also formu-
lated to rank the fuzzy efficient DMUs; and (5) the proposed approach is illustrated, and compared with
existing methods, using a dataset from the literature.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Data envelopment analysis (DEA), initially introduced by
Charnes, Cooper, and Rhodes (1978), is a widely used mathemati-
cal programming technique for estimating the frontier production
for peer decision making units (DMUs) with multiple inputs and
multiple outputs. Charnes et al. (1978) model, commonly referred
to as CCR model, assumed constant returns to scale (CRS). Banker,
Charnes, and Cooper (1984) developed the so-called BCC model for
evaluating the performance of units in the case of variable returns
to scale (VRS). The units are assumed to operate homogenously
under similar conditions. Based on the observed data and some
preliminary assumptions, DEA is able to establish an empirical effi-
cient frontier. If a DMU lies on the frontier, it is said to be efficient,
otherwise it is said to be inefficient. Computing the distance to the
efficient frontier (using some metric and a certain orientation) DEA

provides the relative efficiency score, as well as a target for
improving for each inefficient DMU. In practice, the efficiency score
might be considered as a performance indicator for continuous
improvement while the target informs about the amount (percent-
age) by which an inefficient DMU should decrease its inputs and/or
increase its outputs to become efficient. Moreover, the reference
set of efficient DMUs with which the target is constructed repre-
sents best practice models that act as benchmarks to the inefficient
DMU.

In conventional DEA models, such as CCR and BCC, the observed
input and output data of the DMUs are often not known precisely.
That may not be always the case in the real world. Imprecise eval-
uations may be the result of unquantifiable, incomplete and non-
obtainable information. Imprecise data representation with inter-
val, ordinal, and ratio interval data was initially proposed by
Cooper, Park, and Yu (1999, 2001a, 2001b), leading to so-called
interval DEA (IDEA) to study the uncertainty in DEA. Numerous
other researchers have also proposed and applied different DEA
models with interval data (e.g. Despotis & Smirlis, 2002; Entani,
Maeda, & Tanaka, 2002; Hatami-Marbini, Agrell, & Emrouznejad,
2014; Shokouhi, Hatami-Marbini, Tavana, & Saati, 2010;
Shokouhi, Shahriari, Agrell, & Hatami-Marbini, 2014; Wang,
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Greatbanks, & Yang, 2005). However, decision makers often prefer
using linguistic phrases and expressions such as ‘‘large’’ profit or
‘‘low’’ inventory in their communication, information that cannot
be handled by IDEA. In general, observations are typically divided
into quantitative and qualitative. Quantitative observed data are
often exact, precise and specific values while qualitative data, such
as ‘‘good”, ‘‘better” and ‘‘very good”, are often imprecise or vague
values. The distances between qualitative data are not clear and
it does not make sense to use the ordinal scaling to measure the
preference linguistic terms that arise in natural language.

Fuzzy sets theory, initiated by Zadeh (1965), is a well-known
tool to represent this type of data. Compared to traditional binary
sets (‘‘true” or ‘‘false”, 0 or 1) fuzzy sets are based on the concept of
‘‘degree of membership”, that ranges between zero and one. Natu-
ral language is not straightforwardly transformed into the absolute
terms of 0 and 1. Fuzzy logic considers the membership values 0
and 1 as extreme cases but also considers possible intermediate
membership values between 0 and 1. Hence, fuzzy sets have the
capability of describing qualitative data as fuzzy numbers.

Numerous fuzzy sets-based methods have been proposed in
DEA in the last two decades. Generally, the linear programming
(LP) DEA models are converted to fuzzy LP (FLP) models when
the input and/or output data are characterized by fuzzy numbers.
The existing fuzzy DEA (FDEA) methods can be classified into six
main categories, namely, the tolerance approach, the a-level based
approach, the fuzzy ranking approach, the possibility approach, the
fuzzy arithmetic, and the fuzzy random/type-2 (Emrouznejad,
Tavana, & Hatami-Marbini, 2014; Hatami-Marbini, Emrouznejad,
& Tavana, 2011).

The tolerance approach (e.g. Sengupta, 1992) was the first FDEA
model that used the concept of fuzziness in DEA modeling by
defining tolerance levels on constraint violations. The limitation
behind the tolerance approach is related to the design of a DEA
model with a fuzzy objective function and fuzzy constraints which
may or may not be satisfied (Triantis & Girod, 1998).

The a-level approach is probably the most popular FDEA model
in the literature. This approach generally tries to transform the
FDEA model into a pair of parametric programs for each a-level.
Kao and Liu (2000), one of the most cited studies in the a-level
approach’s category, used Chen and Klein (1997) method for rank-
ing fuzzy numbers to convert the FDEA model to a pair of paramet-
ric mathematical programs for a given level of a. Saati, Memariani,
and Jahanshahloo (2002) proposed a fuzzy CCR model as a possi-
bilistic programming problem and changed it into an interval pro-
gramming problem by means of the a-level based approach.
Afterward, some fuzzy DEA-based extension has been done using
Saati et al. (2002) method such as a four-phase fuzzy DEA frame-
work based on the theory of displaced ideal (Hatami-Marbini,
Saati, & Tavana, 2010) or a positive-normative use of fuzzy logic
in a NATO enlargement application (Hatami-Marbini, Tavana,
Agrell, & Saati, 2013). The a-level approach is also the one gener-
ally used in network DEA (e.g. Kao & Lin, 2012; Kao & Liu, 2011;
Lozano, 2014a, 2014b).

The fuzzy ranking approach category is composed of FDEAmod-
els developed based on distinctive fuzzy ranking methods. Guo and
Tanaka (2001) was the first to develop a fuzzy CCR model based on
the fuzzy ranking approach. Different fuzzy ranking methods may
lead to different efficiency assessments. Hatami-Marbini, Tavana,
and Ebrahimi (2011) proposed a fully fuzzified CCR model to get
the fuzzy efficiency of the DMUs where the input-output data as
well as their weights are characterized by fuzzy numbers.

The ‘‘possibility approach’’ and the ‘‘credibility approach’’ to
FDEA mainly stemmed from Lertworasirikul, Fang, Joines, and
Nuttle (2003), which modeled the uncertainty in fuzzy objective
function and fuzzy constraints with possibility measures from both
optimistic and pessimistic viewpoints.

In the fuzzy arithmetic category, Wang, Luo, and Liang (2009)
argued that a fuzzy fractional programming in the dual FDEA
model cannot simply be transformed into a LP model using con-
ventional methods. They therefore centered on the fuzzy fractional
programming form of CCR model and transformed the multiplier
formulation of the fuzzy CCR model into three LP models to obtain
the fuzzy efficiency of the DMUs.

In the fuzzy random/type-2 category, Qin, Liu, Liu, and Wang
(2009) presented a DEA model with type-2 fuzzy inputs and out-
puts solved in two steps. First, they exploited a reduction method
for type-2 fuzzy variables based on the expected value of a fuzzy
variable, and then they built a FDEA model with the obtained fuzzy
variables. Qin and Liu (2010) developed a fuzzy random DEA
(FRDEA) model where randomness and fuzziness exist simultane-
ously. The authors characterized the fuzzy random data with
known possibility and probability distributions. Tavana, Khanjani
Shiraz, Hatami-Marbini, Agrell, and Paryab (2012) also introduced
three different FDEA models consisting of probability-possibility,
probability-necessity and probability-credibility constraints in
which input and output data entailed fuzziness and randomness
at the same time.

In another category of fuzzy DEA models are those that make
use of geometric properties. Thus, Biondi Neto, Meza, Gomes, and
Bergiante (2011) developed a method to generate fuzzy efficient
frontier by the use of interval DEA frontier when a single interval
input or output presents a certain degree of uncertainty. The
authors used a geometrical and algebraic approach to obtain a
membership degree of each DMU in lieu of its efficiency score. In
the same line, several researchers have defined the fuzzy version
of the production possibility set (PPS) in which all production plans
have different degrees of membership (Bagherzadeh Valami,
Nojehdehi, Abianeh, & Zaeri, 2013; Raei Nojehdehi, Maleki
Moghadam Abianeh, & Bagherzadeh Valami, 2012; Raei
Nojehdehi, Maleki Moghadam, & Bagherzadeh Valami, 2011; Raei
Nojehdehi, Valami, & Najafi, 2011). To do so, the authors first use
a geometrical approach to acquire the membership function of
fuzzy PPS and then transform the geometrical terms into the alge-
braic expression using some basic relationships of DEA models.

Apart from the tolerance approach, which exploits the fuzziness
concept, FDEA models are generally represented as FLP modelswith
fuzzy coefficients (i.e., fuzzy input-output data) and crisp decision
variables. Since FDEA models take the form of FLP problems, the
different FDEA approaches have been developed as different ways
of solving the corresponding FLP models. In general, FLP problems
can be classified into the following six categories to handle fuzzy
data:

(1) FLP models when decision variables and the right-hand-side
of the constraints are characterized by fuzzy numbers (e.g.
Mahdavi-Amiri & Nasseri, 2007).

(2) FLP models when the coefficients of the decision variables in
the objective function are characterized by fuzzy numbers
(e.g. Wu, 2008).

(3) FLP models when the coefficients of the decision variables in
the constraints and the right-hand-side of the constraints
are characterized by fuzzy numbers (e.g. Liu, 2001).

(4) FLP models when the decision variables, the coefficients of
the decision variables in the objective function and the
right-hand-side of the constraints are characterized by fuzzy
numbers (e.g. Ganesan & Veeramani, 2006).

(5) FLP models when the coefficients of the decision variables in
the objective function, the coefficients of the decision vari-
ables in the constraints and the right-hand-side of the con-
straints are characterized by fuzzy numbers (e.g. Mahdavi-
Amiri & Nasseri, 2006).
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