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a b s t r a c t

The team orienteering problem with time windows (TOPTW) is a NP-hard combinatorial optimization
problem. It has many real-world applications, for example, routing technicians and disaster relief routing.
In the TOPTW, a set of locations is given. For each, the profit, service time and time window are known. A
fleet of homogenous vehicles are available for visiting locations and collecting their associated profits.
Each vehicle is constrained by a maximum tour duration. The problem is to plan a set of vehicle routes
that begin and end at a depot, visit each location no more than once by incorporating time window con-
straints. The objective is to maximize the profit collected. In this study we discuss how to use constraint
programming (CP) to formulate and solve TOPTW by applying interval variables, global constraints and
domain filtering algorithms. We propose a CP model and two branching strategies for the TOPTW. The
approach finds 119 of the best-known solutions for 304 TOPTW benchmark instances from the literature.
Moreover, the proposed method finds one new best-known solution for TOPTW benchmark instances and
proves the optimality of the best-known solutions for two additional instances.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The team orienteering problem with time windows (TOPTW) is
a NP-hard combinatorial optimization problem (Labadie, Mansini,
& Melechovsk, 2012). The formal definition of the TOPTW is as fol-
lows. Assume that G ¼ ðN;AÞ is a directed network graph with a
set of nþ 1 nodes N ¼ f0;1; . . . ;ng and set of connecting arcs
A ¼ fði; jÞ : i 2 N; j 2 N; i – jg. The travel time tij on arc (i; j) is
known. Associated with each location i 2 N, service time si, profit
pi, and time window ½bi; ei�, where bi and ei are the earliest and lat-
est times i can be visited, respectively, are known. If a vehicle visits
location i and arrives there before bi, it must wait until bi to begin
service. The profit pi is collected if there is a visit to i within ½bi; ei�.
A fleet of m homogenous vehicles is available. The problem is to
determine a set V of vehicle tours where each customer is visited
at most once and each tour v starts and ends at the depot (i = 0)
within window ½b0; e0�. The objective is to maximize the profit col-
lected from visited customers. The TOPTW is an extension of the
more general orienteering problem (OP), first introduced in Tsili-
girides (Tsiligirides, 1984). The OP considers only a single vehicle,

while the TOPTW utilizes multiple vehicles and includes time win-
dow constraints (Chao, Golden, & Wasil, 1996). A comprehensive
review of applications and solution techniques for OP variants,
including TOPTW, is provided in Vansteenwegen, Souffriau, and
Oudheusden (2011). Example applications include tourist routing
problems (Souffriau & Vansteenwegen, 2010; Souffriau,
Vansteenwegen, Vertommen, Berghe, & Oudheusden, 2008;
Sylejmani, Dorn, & Musliu, 2012), disaster relief logistics (Kirac,
2016; Rath & Gutjahr, 2014), pickup and delivery services
(Gutiérrez-Jarpa, Marianov, & Obreque, 2009), and sales represen-
tative route planning (Tricoire, Romauch, Doerner, & Hartl, 2010).

Many heuristic solution techniques have been developed for
TOPTW in recent years. Montemanni and Gambardella (2009) pro-
pose an ant-colony system (ACS) algorithm for TOPTW. They also
propose and solve 148 benchmark instances for TOPTW, which
they develop by modifying vehicle routing problem with time win-
dows (VRPTW) instances from Solomon (1987) and Cordeau,
Gendreau, and Laporte (1997). In Gambardella, Montemanni, and
Weyland (2012), the ACS algorithm is improved and better solu-
tions are obtained for 26 TOPTW benchmark instances.
Vansteenwegen, Souffriau, Berghe, and Oudheusden (2009)
develop an easy to implement iterated local search (ILS) heuristic
for TOPTW. While ILS is faster than the original ACS algorithm
(Montemanni & Gambardella, 2009), the solutions from ACS are

http://dx.doi.org/10.1016/j.cie.2017.03.017
0360-8352/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: rgedik@newhaven.edu (R. Gedik).

Computers & Industrial Engineering 107 (2017) 178–195

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2017.03.017&domain=pdf
http://dx.doi.org/10.1016/j.cie.2017.03.017
mailto:rgedik@newhaven.edu
http://dx.doi.org/10.1016/j.cie.2017.03.017
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


approximately 2% better, on average, than solutions produced by
ILS. Tricoire et al. (2010) develop a variable neighborhood search
(VNS) heuristic for a variation of TOPTW; namely, the multi-
period orienteering problem with multiple time windows. When
the VNS heuristic is used to solve the TOPTW benchmark instances,
it is observed that solution quality is better than ILS but computa-
tional time is worse. The solution quality and computational time
of VNS is better than ACS. Lin and Yu (2012) develop fast and slow
versions of a simulated annealing (SA) heuristic. The slow SA
heuristic has longer computational times than the fast one, but is
able to find best-known solutions for more instances than the fast
SA heuristic. For both the slow and fast SA heuristics, the solution
quality is better than ILS but worse than ACS and VNS. Labadie
et al. (2012) develop a granular variable neighborhood search
(GVNS) algorithm based on linear programming. The solution qual-
ity of GVNS is better than ILS and ACS but worse than VNS. GVNS is
faster than ACS and VNS but slower than ILS. Qian and Andrew
(2014) develop an iterative three-component heuristic (I3CH) that
finds improved solutions for 35 of the 304 TOPTW benchmark
instances. The first component of I3CH is local search, the second
is a simulated annealing algorithm, and then finally routes are
recombined to obtain better solutions. Cura (2014) develops an
artificial bee colony (ABC) algorithm for TOPTW. The solution qual-
ity of ABC is worse than I3CH and GVNS but better than ACS. It is
able to produce high-quality solutions with shorter runtime. On
average, the computational time of ABC is better than I3CH, GVNS
and ACS.

There is only one exact approach for TOPTW in the literature of
which we are aware. Tae and Kim (2015) introduce a branch and
price algorithm capable of solving both the team orienteering
problem (TOP) and TOPTW. Of the three sets of TOPTW bench-
marks available in the literature, they include only those from
Righini and Salani (2009) in their computational study. They state
the instances from Montemanni and Gambardella (2009) are too
difficult to solve optimally, and also omit those from
Vansteenwegen et al. (2009) because the optimal solutions of the
instances are already known. For the 117 TOPTW benchmark
instances included in their computational study, the branch and
price algorithm finds optimal solutions for 91 of them within a
two-hour runtime limit.

In this paper, we propose a new exact solution technique for the
TOPTW. We formulate TOPTW using a constraint programming
(CP) model and refer to this model as CP-TOPTW. We use CP Opti-
mizer with two different branching rules for its solution. CP has
been shown to be an efficient solution technique for numerous
combinatorial optimization problems. Applications in the litera-
ture include problems such as parallel machine scheduling (Edis
& Oguz, 2012; Gedik, Rainwater, Nachtmann, & Pohl, 2016;
Hooker, 2007; Jain & Grossmann, 2001; Nachtmann, Mitchell,
Rainwater, Gedik, & Pohl, 2014), tournament organization (Trick
& Yildiz, 2011), staff scheduling & rostering (He & Qu, 2012;
Topaloglu & Ozkarahan, 2011), vehicle routing & traveling sales-
man problems (Pesant, Gendreau, Potvin, & Rousseau, 1998,
1999; Quoc & Anh, 2010), and VRPTW (De Backer, Furnon, Shaw,
Kilby, & Prosser, 2000; Guimarans, Herrero, Ramos, & Padrón,
2013; Rousseau, Gendreau, & Pesant, 2002; Rousseau, Gendreau,
Pesant, & Focacci, 2004; Shaw, 1998). Using CP Optimizer with
our model outperforms the branch and price approach of Tae and
Kim (2015) in two primary ways. First, we solve the 187 and 66
TOPTW benchmark instances from Montemanni and Gambardella
(2009) and Vansteenwegen et al. (2009), respectively, that Tae
and Kim (2015) omit. We find solutions with a competitive average
gap (2% and 0.24%) for those instances. Second, the branch and
price approach fails to find a feasible solution within a two-hour
runtime limit for 28 of the 117 TOPTW benchmark instances
included in the Tae and Kim (2015) computational study. Using

CP Optimizer, we find at least one feasible solution within a 30-
min runtime limit for each of these 117 instances. On the other
hand, one strength of the branch and price approach is that opti-
mality is proven for more of the 117 instances than we are able
to prove using CP Optimizer.

The contributions of this paper are threefold. First, a CP model is
introduced for TOPTW and CP Optimizer with two branching rules
is used for its solution. Due to the strengths of CP in expressing
complex relationships, very difficult constraints such as selective
node visits, subtour elimination and time windows are repre-
sented. Compared with ILP formulations for TOPTW, CP-TOPTW
does not require a large number of decision variables and con-
straints. Thus, we are able to run benchmark instances without
experiencing any memory problems. When compared with
approximate approaches in the literature such as sophisticated
local search methods, our CP model does not require extensive
parameter tuning as those methods do. And while the approximate
methods are quite efficient in finding good quality solutions, they
are not able to prove the optimality of those solutions, as we are
able for some instances using CP. Second, CP-TOPTW and its com-
ponents, such as global constraints, provide a strong base for other
solution techniques for OP variants and related routing problems,
potentially fostering new methodological developments. Third,
the results we obtain using CP Optimizer with CP-TOPTW advance
current knowledge regarding TOPTW benchmark instances in a
number of ways. In keeping with the convention in the literature,
we use the term best-known solution to refer to a feasible solution
with objective value equal to the maximum objective value pub-
lished in the literature. We find 119 of the previously best-
known solutions and we improve upon the best-known solution
for one benchmark instance, finding a solution with an objective
value strictly greater than what is published in the literature. For
the 66 instances for which optimal solutions are known, we find
49 of them. Additionally, we provide new proof of optimality for
two test instances.

The remainder of this paper is organized as follows. Section 2
provides the CP formulation for TOPTW and provides an illustra-
tive example. Section 3 provides results for CP-TOPTW and a com-
parison to existing algorithms from the literature. Finally,
conclusions and future research directions are discussed in
Section 4.

2. Methodology

Vansteenwegen et al. (2009) discuss the computational difficul-
ties associated with solving the TOPTW. It is known that solving
TOPTW in polynomial time is unlikely (Lin & Yu, 2012). To address
these computational challenges, we aim to test the effectiveness of
CP, which is well known for its abilities to express complex rela-
tionships using global constraints and to obtain good quality solu-
tions within reasonable times. A CP implementation contains a
search strategy and a constraint propagation mechanism designed
to filter out the values in (integer) variable domains that cause
infeasible solutions (Hooker, 2006; van Hoeve & Katriel, 2006). In
the constraint model, algorithms are triggered every time a change
occurs in the domain of a variable. A feasible solution is obtained
when all domains are reduced to a single value. Note that a vari-
able can be used to model more than one constraint. Therefore,
whenever a change occurs in the domain of a shared variable,
propagation algorithms of all global constraints are run to search
for the possible domain reductions of other variables
(Harjunkoski & Grossmann, 2002; Lombardi & Milano, 2012; van
Hoeve & Katriel, 2006). If a feasible solution has not been achieved
after all possible reductions, value instantiation takes place. If all
variables are instantiated and a constraint is not satisfied, then a
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