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a b s t r a c t

In this paper, we address the Multi-Depot Open Vehicle Routing Problem (MDOVRP), which is a general-
ization of the Capacitated Vehicle Routing Problem (CVRP) where vehicles start from different depots,
visit customers, deliver goods and are not required to return to the depot at the end of their routes.
The goal of this paper is twofold. First, we have developed a general Multiple Neighborhood Search hybri-
dized with a Tabu Search (MNS-TS) strategy which is proved to be efficient and second, we have settled
an unified view of ejection chains to be able to handle several neighborhoods in a simple manner. The
neighborhoods in the proposed MNS-TS are generated from path moves and ejection chains. The numer-
ical and statistical tests carried out over OVRP and MDOVRP problem instances from the literature show
that MNS-TS outperforms the state-of-the-art methods.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The Open Vehicle Routing Problem (OVRP) is a variant of the
well known Capacitated Vehicle Routing Problem (CVRP)
(Dantzig & Ramser, 1959), in which vehicles do not return to the
depot. Each route ends at the last served customer. This problem
was first introduce by Schrage (1981), then Sariklis and Powell
(2000) introduced this problem as OVRP for the first time. One of
the first applications of this problem is a special air cargo routing
problem for FedEx introduced by Bodin, Golden, Assad, and Ball
(1983). OVRP model is appropriate when the vehicles fleet is hired
(Sariklis & Powell, 2000). For instance, in the transportation of
handicapped persons (Soto, Sevaux, & Rossi, 2014), care centers
for disabled people must provide daily transport to patients from
their home to the care center as well as the return after treatment.
These care centers work with specialized services companies in the
transportation of handicapped persons, which have adapted
vehicles for the transportation of disabled people. For other real-
life applications of this kind of problem, readers are referred to
Li, Golden, and Wasil (2007), Repoussis, Tarantilis, Bräysy, and

Ioannou (2010, 2007), Tarantilis, Kiranoudis, and Vassiliadis
(2004, 2005).

Furthermore, an excellent literature review about OVRP is pro-
vided in Zachariadis and Kiranoudis (2010) or in Li et al. (2007).
Some exact methods have been proposed to tackle OVRP. For
instance, Letchford, Lysgaard, and Eglese (2007) propose a Branch-
and-Cut algorithmandPessoa, de Aragão, andUchoa (2008) propose
a more complex Branch-and-Cut-and-Price strategy to solve the
problem. Exact methods reach optimal solutions at the cost of pro-
hibitively large computational times for real-life problem instances.
Therefore, metaheuristic approaches seem a good alternative to
produce high quality solutions in a reasonable computational time.
Readers interested to knowmore about themetaheuristic dedicated
to OVRP are referred to Reinholz and Schneider (2013), Sariklis and
Powell (2000), MirHassani and Abolghasemi (2011), Li et al. (2007),
Repoussis et al. (2010), Fleszar, Osman, and Hindi (2009),
Zachariadis and Kiranoudis (2010), Li, Leung, and Tian (2012), Yu,
Ding, and Zhu (2011), and Derigs and Reuter (2009).

There are many real-life transportation problems, where the
vehicles can depart from several depots. In the logistic field, this
problem is well-known as the Multi-Depot Vehicle Routing
Problem MDVRP (Chao, Golden, & Wasil, 1993; Cordeau,
Gendreau, & Laporte, 1997a; Lim & Wang, 2005; Lau, Chan, Tsui,
& Pang, 2010; Renaud, Laporte, & Boctor, 1996; Wren & Holliday,
1972). Thus, the Multi-Depot Open Vehicle Routing Problem
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MDOVRP is a variant of the MDVRP, which is more complex than
the single-depot version (OVRP). The MDOVRP has been intro-
duced by Tarantilis and Kiranoudis (2002) to tackle a distribution
problem of fresh meat. They proposed a list-based threshold-
accepting algorithm. Also, Liu, Jiang, and Geng (2014) present a
mixed integer programming mathematical formulation and a
hybrid genetic algorithm. Recently, Lalla-Ruiz, Expósito-
Izquierdo, Taheripour, and Voss (2015) proposed a new mixed
integer programming formulation for the MDOVRP, which
improves the subtour elimination constraints proposed by Liu
et al. (2014) and provides new sets of constraints.

In this paper, we propose a Multiple Variable Neighborhood
Search hybridized with a Tabu Search called MNS-TS to tackle
the MDOVRP. The structure of this paper is organized as follows.
The next section presents the MDOVRP. Then, the following sec-
tions describe the ingredients of the MNS-TS. Section 3 introduces
the Path Move, Section 4 explains the generation of our ejection
chains and Section 5 presents the different neighborhoods we are
using. Section 6 presents the Tabu Search dedicated to the
MDOVRP. Our greedy algorithm to generate initial solutions is pre-
sented in Section 7. Section 8 summarizes our MNS-TS approach.
Extensive computational results as well as the statistical tests are
given in Section 9. Section 10 concludes the paper.

2. Multi-depot open VRP

This problem is defined on a complete directed graph G ¼ ðV ;AÞ,
where M ¼ f1; . . . ;mg is the set of depots and N ¼ f1; . . . ;ng is the
set of customers. Thus, V ¼ M [ N is the set of all vertices in the
graph G, with M \ N ¼ £. The set of arcs is denoted by A. Each
arc ði; jÞ in A represents connections between two vertices.
8i 2 N; qi is the demand of customer i. Depots have a zero demand,
hence qi ¼ 0;8i 2 M. Depots have enough goods to deliver to all the
customers, and an unlimited fleet of homogeneous vehicles with a
capacity Q. Each arc ði; jÞ is associated with the distance di;j between
the two vertices i and j. The traveling length of any vehicle route
must be less than a given threshold D. The goal is to determine
the vehicle routes which minimize the total traveling length satis-
fying the following constraints:

� each route starts at any depot and finishes at the last visited
customer,

� each customer must be visited by exactly one vehicle,
� the total demand of the customers on the route of any vehicle
cannot exceed its capacity Q,

� the total length of each vehicle route must not exceed D, the
length limit.

A solution S of the MDOVRP is represented as a quintuplet
S ¼ ðX;C; E;R;OÞ. Where matrix X represents the vehicle routes,
vector Xk is the vehicle route k and xh;k ¼ i means that vertex i is
the h-th vertex visited by vehicle route k. Vector C is the used
capacity, ck 2 R�

þ is the capacity used by the vehicle route k. Vector
E is the length of the vehicle routes, ek 2 R�

þ is the traveled distance
performed by the vehicle route k. Vector R is the route assigned to
customers, ri ¼ k indicates that customer i is served by the vehicle
k. Finally, vector O is the position of the customers in the routes,
oi ¼ h means that customer i is the h-th customer in the vehicle
route ri. Note that matrix X, vectors R and O carry the same pieces
of information, i.e. xh;k ¼ i if and only if ri ¼ k and oi ¼ h.

The objective function to minimize is the total traveling length
and can be expressed as follows:

f ðSÞ ¼
X
k

XjXk j�1

h¼1

dðxh;k; xhþ1;kÞ ð1Þ

3. Path and path moves

This section introduces the path move, which is at the core of
the ejection chains and the neighborhoods of MNS-TS. First, we
define a path and a path move. Then, we presents the contribution
length function, which computes the contribution length by mov-
ing a path. Finally, we define a function which allows us to deter-
mine when a path move is feasible or not.

3.1. Path

A path is a sequence of customers composed by one or more
consecutive customers. A path is denoted by Pai ;8i 2 N and
a 2 N�. It means that this path starts at customer i in the route ri
and visits a customers. A path only composed by one customer i
is denoted by Pi.

For instance, in the following route:

5;6; 7|{z}
P7

;1;11;3;2;10;15|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
P43

;8;9

we have path P7 that is only composed by customer 7, and path P4
3

that starts at customers 3 and is composed by four consecutive cus-
tomers: 3;2;10 and 15.

We denote by ‘ðPai Þ the length of path Pai :

‘ðPai Þ ¼
Xoiþa�2

h¼oi

dðxh;ri ; xhþ1;ri Þ ð2Þ

Furthermore, we denote by ‘IðPai Þ the length of the reverse path,
expressed by:

‘IðPai Þ ¼
Xoiþ1

h¼oiþa�1

dðxh;ri ; xh�1;ri Þ ð3Þ

Finally, Eq. (4) explicits dðPai Þ which is the total demand of the cus-
tomers that are part of Pai :

dðPai Þ ¼
Xoiþa�1

h¼oi

qxh;ri
ð4Þ

3.2. Path move

A move consists in removing a path Pai from its route to reinsert
it after some customers j in the same route or not. There are two
different ways of reinserting a path, because the vertex sequence
of a path may be reversed. Reversion is represented by x in
X ¼ f1;2g. Thus, x is set to 2 if path Pai is reversed and inserted
after customer j, otherwise x is set to 1.

A path move is denoted by a triplet ðPai ; j;xÞ, which means that
path Pai is inserted in the route of customer j right after it, with the
reversion or not indicated by x.

With the goal of reducing the size of the neighborhoods pre-
sented in Section 5, for each customer i, we determine a neighbor-
hood NðiÞ composed by the closest customers of i in G. For
instance, the neighborhood of a vertex i can be composed by the
vertices j such that the distance from vertex i to vertex j is less than
a radius p, i.e., NðiÞ ¼ fj 2 V ; dði; jÞ 6 pg.

Furthermore, we define by PðSÞ, the set of all possible path
moves. We also define PaðS; LÞ as the set of path moves of size a
that can be generated from a solution S and a list of customers L.
Specifically, it is stated that PaðS; LÞ ¼ fðPai ; j;xÞ 2 PðSÞ; i 2 L;
j 2 NðiÞ;x 2 Xg. In the elementary situation defined by a ¼ 1 and
x ¼ 1, the set of possible path moves of size one is denoted by
PðS; LÞ.
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