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a b s t r a c t

The aim of this paper is to point out that all mathematical programming models proposed by Ying et al.
(2016) are incorrect. We present four revised mathematical programming models and four improved
mathematical programming models by adding and revising some constraints and decision variables.
Moreover, we show that the first three scheduling problems considered in their paper are equivalent
to the problems with the objective of minimizing the sum of completion times or minimizing the max-
imum lateness, which can be solved by algorithms proposed by Luo et al. (2015) in Oðn2Þ time.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In a recent paper, Ying, Lu, and Chen (2016) consider four
single-machine scheduling problems with a variable maintenance
(VM), where the machine is continuously available but must
undertake a maintenance activity during the planning horizon
and the duration of maintenance is a positive and non-decreasing
function of its start time.

Following the same notations and terminologies in Ying et al.
(2016), the scheduling scenario under consideration can be
described as follows. There is a set of jobs J ¼ f1;2; . . . ;ng ready to
be processed on a single machine with a maintenance activity. All
jobs are non-resumable and simultaneously available for processing
at the beginning of the planninghorizon. The processing timeof job j
is pj. The start time of the maintenance activity, s, is a decision vari-

able and must be before a given deadline sd where sd <
Pn

j¼1pj. The
duration of the maintenance activity, l, is a positive and non-
decreasing function of its start time s, i.e., l ¼ f ðsÞ. Themachine can-
not process any job during the period of the maintenance activity.

Ying et al. (2016) consider four objectives, i.e., minimizing
mean lateness, minimizing maximum tardiness, minimizing total
flow time, and minimizing mean tardiness, each at a time,
under the above scheduling scenario. In other words, they
consider the following four scheduling problems:
1;VMjjL;1;VMjjTmax;1;VMjrj ¼ rjPjFj, and 1;VMjdj ¼ djT, where rj

and dj are the release time and due-date of job j, respectively. Let
Cj be the completion time of job j. Then Fj ¼ Cj � rj; Lj ¼ Cj � dj

and Tj¼maxf0;Ljg. And then L¼Pn
j¼1Lj

.
n;Tmax¼maxfT1;T2;...;

Tng; Lmax ¼ maxfL1; L2; . . . ; Lng; T ¼Pn
j¼1Tj

.
n. For each of the four

problems, Ying et al. (2016) propose a mixed integer linear pro-
gramming model and provide a polynomial-time optimal
algorithm.

As we observe, all the mixed integer linear programming mod-
els they proposed are incorrect and the first three scheduling prob-
lems considered in their paper are equivalent to the problems with
the objective of minimizing the sum of completion times or mini-
mizing the maximum lateness, which can be solved by algorithms
proposed by Luo, Cheng, and Ji (2015) in Oðn2Þ time.

For convenience, denote by J½i� the job at the ith processing posi-
tion. Let d½k�; r½k� and C½k� be the due date, the release time and the
completion time of J½i�, respectively. Denote by pi the candidate
schedule with the maintenance activity arranged before the start
time of J½i�. For candidate schedule p1, the maintenance activity

executed at time zero. Let C½k�ðpiÞ; f ðC½i�1�Þ; TmaxðpiÞ and TðpiÞ be
the completion time of J½k�, the duration of maintenance activity,
the maximum tardiness of the jobs and the mean tardiness of
the jobs in candidate schedule pi, respectively.

2. On the mathematical programming models

Let xij be binary decision variables. If job j is assigned to position
i, then xij ¼ 1, and xij ¼ 0 otherwise.
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2.1. Models proposed by Ying, Lu and Chen

For problem 1;VMkL, Ying et al. (2016) propose the following
model.

Minimize z

subject to

z P
Xn
k¼1

ðC ½k�ðpiÞ � d½k�Þ=n; i ¼ 1;2; . . . ; n; ð1Þ

C ½k�ðpiÞ ¼
Xk
i¼1

Xn
j¼1

xijpj; k ¼ 1;2; . . . ; i� 1; ð2Þ

C ½k�ðpiÞ ¼
Xk
i¼1

Xn
j¼1

xijpj þ f ðC ½i�1�Þ; k ¼ i; iþ 1 . . . ;n; ð3Þ

Xn
i¼1

xij ¼ 1; j ¼ 1;2; . . . ;n; ð4Þ

Xn
j¼1

xij ¼ 1; i ¼ 1;2; . . . ; n; ð5Þ

xij � 0: ð6Þ
For problem 1;VMkTmax, Ying et al. (2016) propose the following

model.

Minimize z

subject to

z P TmaxðpiÞ; i ¼ 1;2; . . . ; n; ð7Þ

TmaxðpiÞ P C ½k�ðpiÞ � d½k�; k ¼ 1;2; . . . ; n; ð8Þ

TmaxðpiÞ � 0; ð9Þ

constraints ð2Þ � �ð6Þ:
For problem 1;VMjrj ¼ rjPjFj, Ying et al. (2016) propose the fol-

lowing model.

Minimize z

subject to

z P
Xn
k¼1

ðC ½k�ðpiÞ � r½k�Þ; i ¼ 1;2; . . . ; n; ð10Þ

constraints ð2Þ � �ð6Þ:
For problem 1;VMjdj ¼ djT , Ying et al. (2016) propose the fol-

lowing model.

Minimize z

subject to

z P
Xn
k¼1

T ½k�ðpiÞ=n; i ¼ 1;2; . . . ;n; ð11Þ

T ½k�ðpiÞ P C ½k�ðpiÞ � d½k�; k ¼ 1;2; . . . ;n; ð12Þ

T ½k�ðpiÞ P 0; k ¼ 1;2; . . . ; n; ð13Þ

constraints ð2Þ � �ð6Þ:

2.2. Comments on the models

Ying et al. (2016) call these models mixed integer linear pro-
gramming mathematical models. However, as we do not know
whether f is linear or not, so such a name is not appropriate here.

As we observe, there are some fatal errors in the models. First of
all, the aims of these models are seeking for the worst rather than
the best (optimal) schedules. Taking the first model for instance,
according to constraint set (1), z must be larger than or equal to
the mean lateness of any candidate schedule. Thus, minimizing z
is equivalent to force the variable to take the objective value of
the worst candidate schedule. We will see this by solving a
scheduling instance at the end of this subsection.

Secondly, there are some constraints which are missing in Ying
et al. (2016). Note that the start time of the maintenance activity
must be before a given deadline sd, so we have

C ½i�1�ðpiÞ 6 sd; i ¼ 1;2; . . . ;n; ð14Þ
and

C ½0�ðpiÞ ¼ 0; i ¼ 1;2; . . . ;n: ð15Þ
Note that d½k� represents the due date of J½k� in candidate sched-

ule pi in problem 1;VMkL, problem 1;VMkTmax and problem
1;VMkT. So we need to add the following constraint set in the
mathematical programming models for these problems.

d½k� ¼
Xn
j¼1

xkjdj; k ¼ 1;2; . . . ;n: ð16Þ

Moreover, noting that xij are binary variables, constraint set (6)
should be

xij 2 f0;1g; i; j ¼ 1;2; . . . ;n: ð17Þ
Even we add these missing or revised constraint sets to the cor-

responding models, they are still unable to generate the desired
solutions. Let us take the model for the first scheduling problem
as an example. Consider the following instance:
J ¼ f1;2g;n ¼ 2; p1 ¼ 2; p2 ¼ 3; d1 ¼ 1; d2 ¼ 1; sd ¼ 4; f ðxÞ ¼ 1þ x.

It is easy to see that there are only two candidate schedules for
this instance. For problem 1;VMkL, solving the model, we obtain
x11 ¼ x22 ¼ 1; x12 ¼ x21 ¼ 0. In other words, the model generates
candidate schedule p2 ¼ ð1;MA;2Þ with an objective value of 4.
However, one may find that the other candidate schedule,
p1 ¼ ðMA;1;2Þ, is optimal with an objective value of 3.5, which is
less than that of the generated candidate schedule p2 by the model.
This indicates that the model is seeking for the worst rather than
the best (optimal) schedule.

2.3. The revised models

Recall that pi is a candidate schedule with the maintenance
activity arranged before job J½i�. Generally speaking, there are n! fea-
sible schedules where the maintenance activity is arranged before
the ith position of a processing sequence. Obviously, the candidate
schedule pi is the best one among them. And for this reason one
cannot revise these models by maximizing z with constraint set
(1) in reverse order (i.e., replacing P with 6 in constraint set (1))
to get an optimal schedule.

Assume that pl1 6 pl2 6 � � � 6 pln , where ðl1; l2; . . . ; lnÞ is a permu-
tation of ð1;2; . . . ;nÞ. Let k� be an integer such thatPk

i¼1pli
6 sd <

Pkþ1
i¼1 pli

. Clearly, there are k� candidate schedules. If
we can determine all the candidate schedules, then we can obtain
an optimal schedule easily by choosing the best one from them.
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