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a b s t r a c t

In this paper, matrix-based methods are presented to compute the optimal replacement time and mean
residual lifetime of a system under particular class of reliability shock models. The times between succes-
sive shocks are assumed to have a common continuous phase-type distribution. The system’s lifetime is
represented as a compound random variable and some properties of phase-type distributions are utilized.
Extreme shock model, run shock model, and generalized extreme shock model are shown to be the mem-
bers of this class. Graphical illustrations and numerical examples are presented for the run shock model
when the interarrival times between shocks follow Erlang distribution.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Shocks models have always been very popular in applied prob-
ability and engineering reliability. In a shock model, a system (or
component) is subject to shocks of random magnitudes at random
times and it fails if a certain pattern corresponding to shocks, and/
or times between shocks occurs. Thus the failure time of the sys-
tem can be represented by a compound random variable which
appears as a function of magnitudes of shocks and times between
consecutive shocks. Various shock models have been defined and
studied in the literature. They can be classified as cumulative shock
models, extreme shock models, run shock models, delta shock
models, and mixed shock models. Recently, many research papers
on reliability shock models have been published in probability and
engineering journals. Wen, Cui, Si, and Liu (in press) studied a mul-
tiple warm standby delta shock system. Parvardeh and
Balakrishnan (2015) have obtained some results on reliability char-
acteristics of a system under mixed delta shock models. Cha and
Finkelstein (2016) presented new shock models based on the gen-
eralized Polya process. Eryilmaz (2016) studied two different dis-
crete time shock models when the shocks occur according to a
Markov chain. Zhou, Wu, Li, and Xi (2016) proposed a periodic pre-
ventive maintenance modeling method for leased equipment with
continuous internal degradation and stochastic external shock
damage. Song, Coit, and Feng (2016) developed new reliability
models for systems subject to competing hard and soft failure pro-

cesses with shocks that have dependent effects. In An and Sun
(2017), a reliability model for systems subject to multiple depen-
dent competing failure processes with shock loads above a certain
level has been proposed. Mercier and Pham (2017) considered a
bivariate failure time model with random shocks and mixed
effects.

In this paper, we propose a method to compute optimal replace-
ment time and mean residual lifetime of the system that is defined
under a particular class of shock models. In this class, the number
of shocks that cause failure of the system and the times between
successive shocks are assumed have phase-type distributions.
Our method is based on closure properties of phase-type
distributions.

Before proceeding further we fix some notation.

N: The random variable representing the number of shocks that
cause failure of the system.
PHd: Discrete phase-type distribution.
PHc: Continuous phase-type distribution.
Xi: The interarrival time between ði� 1Þ-th and i-th shocks,
i P 1.
F: The common cumulative distribution function of X1;X2; . . ..
T: System’s lifetime.

A discrete phase type distribution can be seen as the distribu-
tion of the time to absorption in an absorbing Markov chain. The
probability mass function (pmf) of N which has a discrete phase-
type distribution has the form of
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P N ¼ nf g ¼ aQ n�1u0; ð1Þ
for n 2 N, where Q ¼ qij

� �
m�m

is a matrix which includes the transi-
tion probabilities among them transient states, and u0 ¼ ðI� Q Þe0 is
a vector which includes the transition probabilities from transient
states to the absorbing state, a ¼ ða1; . . . ; amÞ with

Pm
i¼1ai ¼ 1, and

I is the identity matrix (see, e.g. Neuts, 1981). The matrix Q must
satisfy the condition that I� Q is nonsingular. The survival function
of N is given by

P N > nf g ¼ aQ ne0; ð2Þ

where e ¼ ð1; . . . ;1Þ1�m. The expected value of N can be computed

from EðNÞ ¼ aðI� Q Þ�1e0. We shall use N � PHdða;Q Þ to represent
that the random variable N has a discrete phase-type distribution.

The cumulative distribution function of a continuous phase-
type random variable is represented as

FðtÞ ¼ P X 6 tf g ¼ 1� a expðAtÞe0; ð3Þ
where the nonsingular matrix A of dimension m�m has negative
diagonal elements, and non-negative off-diagonal elements. Fur-
thermore, all row sums of A are non-positive. We shall use
X � PHcða;AÞ to represent that the random variable X has a contin-
uous phase-type distribution of order m with a PH-generator A and
substochastic vector a, i.e. ae0 6 1. If the vector a is properly sub-
stochastic, i.e. ae0 < 1 then the distribution of the random variable
X has an atom at zero.

The probability density function (pdf) of X is

f ðtÞ ¼ a expðAtÞa0;

where a0 ¼ �Ae0. The expected value of X can be computed from

EðXÞ ¼ � aA�1e0
� �

. Some well-known continuous phase-type distri-

butions are exponential, Erlang, generalized Erlang, and Coxian
distributions.

Phase-type distributions have been widely used in various
fields including reliability (Neuts & Meier, 1981) and queueing sys-
tems (Yang & Alfa, 2009). Properties and applications of phase-type
distributions are well presented in a recent book of He (2014).

The present paper is organized as follows. In Section 2, we
define the class C of shock models that we deal with. Section 3 is
devoted the optimal replacement time problem. In Section 4, we
present a method to compute the mean residual life (MRL) of a sys-
tem that is defined under a shock model of class C. In Section 5, we
define shock models that are members of the class C. Finally in Sec-
tion 6, we present illustrative examples.

2. The class

Consider a system that is subject to a sequence of shocks over
time. Let X1 denote the time when the first shock occurs; the mag-
nitude of the shock is also assumed as random and is described by
a continuous random variable Y1. Moreover, denote by Xi the inter-
arrival time between the ði� 1Þ-th and i-th shocks, and by Yi the
respective magnitude of the i-th shock, i P 2. Assume that both
sequences Y1;Y2; . . . and X1;X2; . . . consist of independent and
identically distributed random variables. Define a random variable
N to be the number of shocks that cause failure of the system. The
random variable N can be seen as a stopping random variable and
usually is a function of the sequence of random variables Y1;Y2; . . ..
A shock model M is included in the class C if the system’s lifetime
under the model M can be written as

T ¼
XN
i¼1

Xi; ð4Þ

where the phase-type random variable N is independent of the
sequence of interarrival times X1;X2; . . . that have a common
phase-type distribution. In fact, with the class C we consider sys-
tems whose lifetimes can be represented as a compound random
variable which is a sum of random number of independent random
variables. The random variable N counts the number of events, e.g.
shocks until the occurrence of a certain event that causes failure of
the system. The random variables X1;X2; . . . denote times between
events/shocks. The term ‘‘shock” should be understood as a poten-
tially harmful event (e.g., high temperature, electrical impulses of
large magnitude, etc.). In the extreme shock model, a shock does
not have any impact on the system if its magnitude is below a cer-
tain level d while it kills the system if the magnitude exceeds or
equal to d. In this case, the random variable N represents the num-
ber of shocks until the first shock which exceeds or equal to d. Thus
the extreme shock model is a member of the class C.

Not all shock models are included in the class C. Consider the d-
shock model. According to the d-shock model, the system fails
when the time between two consecutive shocks is less than a given
critical threshold d (Li & Kong, 2007). In this case,

N ¼ nf g iff X1 > d; . . . ;Xn�1 > d;Xn 6 df g;
and P N ¼ nf g ¼ P X1 > df g½ �n�1P X1 6 df g; n ¼ 1;2; . . . which implies
that the random variable N has a phase-type distribution. However,
because N depends on the sequence of interarrival times X1;X2; . . .,
d-shock model cannot be included in the class C.

As is clear from (4), for a shock model in the class C, the system’s
lifetime appears as a compound random variable. The rule that
describes the failure of the system is defined by the random vari-
able N. As is well-known, the common distribution of the random
variables X1;X2; . . . depend on the process in which the shocks
occur according to. Obviously, if the shocks occur to a system
according to a Poisson process with rate k, then
P Xi 6 tf g ¼ 1� e�kt; t P 0.

Assume that X1;X2; . . . are independent and Xi � PHcða;AÞ, and
independently N � PHdða;Q Þ. Then

T ¼
XN
i¼1

Xi � PHcða� a;A� Iþ ða0aÞ � Q Þ; ð5Þ

where � is the Kronecker product (He, 2014). That is, phase-type
distributions are closed under compounding. Thus the survival
function of T can be computed from

P T > tf g ¼ ða� aÞ expððA� Iþ ða0aÞ � Q ÞtÞe0 ð6Þ
which is obvious from (3).

3. Optimal replacement time

A machine or production system may be subject to external
shocks in its working environment. Upon its failure, the system
or unit is replaced by a new one, and the process repeats. A cost
is suffered for each replacement, and additional cost is incurred
at each failure in service. Thus, an attempt should be made by an
engineer to replace the system before failure. The problem is to
find the optimal replacement time which minimizes the total
long-run average cost per unit time. In this section, we attack this
problem under shock models that are defined by the class C.

According to the classical age replacement policy, the system is
replaced upon its failure or upon its reaching age t, whichever
occurs first (Ahmad & Kamaruddin, 2012). Let c1 and c2 denote
respectively the costs of replacing non-failed and failed system.
Because a failure incurs an additional penalty, we assume c1 < c2.
If T denotes the lifetime of the system under a shock model, then
the mean cost rate per unit time as a function of the replacement
age t is given by
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