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a b s t r a c t

The cyber-physical systems of Industry 4.0 are expected to generate vast amount of in-process data and
revolutionise the way data, knowledge and wisdom is captured and reused in manufacturing industries.
The goal is to increase profits by dramatically reducing the occurrence of unexpected process results and
waste. ISO9001:2015 defines risk as effect of uncertainty. In the 7Epsilon context, the risk is defined as
effect of uncertainty on expected results. The paper proposes a novel algorithm to embed risk based
thinking in quantifying uncertainty in manufacturing operations during the tolerance synthesis process.
This method uses penalty functions to mathematically represent deviation from expected results and
solves the tolerance synthesis problem by proposing a quantile regression tree approach. The latter
involves non parametric estimation of conditional quantiles of a response variable from in-process data
and allows process engineers to discover and visualise optimal ranges that are associated with quality
improvements. In order to quantify uncertainty and predict process robustness, a probabilistic approach,
based on the likelihood ratio test with bootstrapping, is proposed which uses smoothed probability esti-
mation of conditional probabilities. The mathematical formulation presented in this paper will allow
organisations to extend Six Sigma process improvement principles in the Industry 4.0 context and imple-
ment the 7 steps of 7Epsilon in order to satisfy the requirements of clauses 6.1 and 7.1.6 of the
ISO9001:2015 and the aerospace AS9100:2016 quality standard.
� 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Industry 4.0, also called the fourth industrial revolution, has
already started to take place and it will involve a complete digital
transformation of many manufacturing activities. This revolution
will break the existing boundaries of manufacturing operations
to deliver a new generation of intelligent, co-operating and inter-
connected manufacturing systems capable of monitoring system
performance real time to control costs, reduce downtime and pre-
vent faults (Foresight, 2013). The new manufacturing systems will
be characterised by cyber-physical systems able to interoperate via
networked connections and interact with humans in complex
smart factory environments. These systems will make extensive
use of data and predictive analytics to manage manufacturing pro-
cesses more efficiently and allow production of customised prod-
ucts with increased profitability and energy efficiency (Deloitte,
2015; Germany Trade & Invest, 2015; Manyika, 2012; Rockwell

Automation, 2014). As new technologies are starting to be
deployed as part of the fourth industrial revolution, one of the big-
gest challenges manufacturing companies are facing is to develop
capabilities to timely access and reuse the sheer volume of data
and information scattered across diverse business functions to gain
new insights and to create knowledge and value for the enterprise
(Foresight, 2013). As part of this digital transformation new predic-
tive analytics tools will need to be developed to access, integrate
and use the vast, multi-faceted and heterogeneous data sets that
will become available, including machine and human generated
data collected through sensors and other interconnected IT
systems.

In the context of continual improvement, undoubtedly the new
generation of manufacturing systems represent an important
opportunity for leveraging existing continual improvement capa-
bilities by exploiting the potential to create new knowledge from
in-process data and enabling real-time decision making capabili-
ties. Continual improvement is defined by the ISO9001:2015 stan-
dard as a ‘‘recurring activity to enhance performance”, and the one
that generally leads to a corrective or preventive action
(International Standard Organisation ISO, 2014, p. 16). This
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typically involves reducing variation in production processes to
satisfy customer requirements. According to Stricker and Lanza
(2014), the robustness of a production system should aim for both
a target value of the process outcome and a stable or consistent
performance with minimum deviation or variation. In multipro-
cess manufacturing achieving process robustness is a challenging
activity because the quality of the final product is often influenced
by hundreds of factors as well as part specific quality constraints
(Giannetti et al., 2014, 2015; Ransing & Ransing, 2014; Roshan,
Giannetti, Ransing, & Ransing, 2014). Production processes in foun-
dries are a typical example of multiprocess manufacturing as they
consists of many sub-processes (i.e. patternmaking, molding, core-
making, melting and pouring, heat treatment, welding and finish-
ing), with their quality determined by the effect and interactions
of many process inputs. For these processes, quality of the final
product cannot be simply achieved by limiting process variability
to predefined thresholds determined according to the customer
requirements. In fact, despite working within specifications, a pro-
cess may still exhibit a large amount of variance in its output target
value. Process knowledge is often necessary to implement changes
which will lead to enhanced performance and achieve process
robustness. Recently a novel methodology, called 7Epsilon
(2015), has been developed which promotes the use of risk based
analysis of in-process data to create new product specific process
knowledge and evaluate opportunities that will lead to improve-
ment of manufacturing processes, as required by the
ISO9001:2015 standard. (Giannetti et al., 2015; Ransing, Batbooti,
Giannetti, & Ransing, 2016; Roshan et al., 2014). Ransing et al.
(2016) have shown that new product specific process knowledge
can be created from in-process data by means of tolerance synthe-
sis. In the literature process tolerance synthesis is defined as the
problem of allocating tolerances of process variables to achieve a
specified quality at a minimum costs (Ding, Jin, Ceglarek, & Shi,
2000). Extending this definition to the context of multiprocess
manufacturing, tolerance synthesis is the study of variability in
all process inputs (including interactions among process inputs)
in order to discover optimal regions that correlate with the occur-
rences of expected process outputs (results) (Ransing et al., 2016).
Owing to its definition, tolerance synthesis involves developing a
sound understanding of how variability of process factors (i.e. pro-
cess input settings) affects the expected target value and the vari-
ability of responses (i.e. process outputs). Process robustness is
then achieved by selecting optimal tolerance limits of process vari-
ables that will reduce variation of responses (Ransing et al., 2016).
One approach to solve the tolerance synthesis problem and predict
process robustness is to attempt to model the relationships
between process factors and responses from in-process data. In
the literature data driven predictive methods have been used and
applied to several industrial sectors, including manufacture of fab-
ricated metal products, computers and electronic goods (Köksal,
Batmaz, & Testik, 2011). The influence of design and process
parameters has also been studied via numerical simulation meth-
ods (Lewis, Manzari, Ransing, & Gethin, 2000; Lewis & Ransing,
2000; Pao, Ransing, Lewis, & Lin, 2004; Postek, Lewis, Gethin, &
Ransing, 2005), decision trees (Bakır et al., 2006) and Bayesian net-
works (Lewis & Ransing, 1997). Typically these methods attempt to
model the complex relationships between process inputs and out-
puts to characterise or, sometimes, predict process behaviour and
find improvement opportunities. However, for complex manufac-
turing processes, these relationships are not easily captured due
to several reasons. First of all, in multiprocess manufacturing oper-
ations, the quality of the final product is often influenced by a com-
bination of large number of product and process variables,
including both categorical and continuous variables. Secondly,
relationships between inputs and quality characteristics are
related not only to some physical phenomena but also to interac-

tions of different process settings. Trying to model these relation-
ships can become very cumbersome with the risk of including
variables with little effect on the final quality output (Giannetti
et al., 2014). Traditional data driven approaches, such as regression
analysis, tend to fail due the inability to model complex interac-
tions and overfitting problems due to the presence of noise. Unless
some prior knowledge about the underlying model is available, fit-
ting the data with simple models, such as a linear model, would fail
to capture the complex interactions (Bakır et al., 2006). On the
other hand, using more complex models (e.g. polynomials) would
lead to overfitting because of the presence of noise and small
amount of observations. Overfitting will then produce a model that
performs very well on the available data but has very poor predic-
tive performance. In order for process knowledge to be learnt
robustly, there is the need to analyse weak patterns in noisy and
heterogeneous datasets. Furthermore, because of the presence of
noisy data, uncertainty of the model results need to be quantified
to overcome the lack of process knowledge.

In this paper a novel algorithm is proposed to predict the
robustness of a process by quantifying uncertainty in manufactur-
ing operations. The main motivation of this work is to develop a
robust and general purpose method for tolerance synthesis to
quantify the combined effects of process variables on the quality
output without making distributional assumptions and overcome
the linearity assumption of previous algorithms for risk based tol-
erance synthesis (Giannetti et al., 2014; Ransing et al., 2016). This
is achieved by introducing a novel mathematical formulation of the
tolerance synthesis problem in terms of conditional quantiles of
response variables and a robust algorithm based on quantile
regression to find optimal tolerance limits. The method improves
the previous quality correlation algorithm for tolerance synthesis
(Ransing et al., 2016) by using the concept of likelihood ratio for
probabilistic estimation of the effects of the new tolerance limits
on the quality output. Uncertainty quantification of the newly
developed hypotheses is performed using the bootstrap method
to predict process robustness and aid development of new product
specific process knowledge.

The paper is organised as follows. Section 2 reviews regression
trees methods and their industrial applications, including tradi-
tional least square and quantile regression approaches. Section 3
introduces the tolerance synthesis problem, its mathematical for-
mulation and the proposed algorithm. The latter includes a proba-
bilistic approach for hypotheses validation based on calculation of
likelihood ratio with bootstrap method. The method is illustrated
using test data from the UCI machine learning repository. In Sec-
tion 4 the proposed algorithm is applied to an industrial case study
to show its application for uncertainty quantification in multipro-
cess manufacturing systems. The paper is concluded in Section 5.

2. Related methods: regression trees and quantile regression

Decision tree learning is a common method used for classifica-
tion and regression problems, owing its popularity to easiness of
interpretation and the ability to visually and explicitly represent
decision making rules (Bakır et al., 2006). The general method
builds a tree shaped structure to predict or classify a dependent
variable (often called response variable) by recursive partitioning
the data set into groups of observations with similar values of
the dependent variable (Breiman, Friedman, Stone, & Olshen,
1984). One main advantage of decision tree learning is that it can
deal simultaneously with continuous and categorical predictor
variables, without the need of further transformations and making
distributional assumptions (Francke, López-Tarazón, & Schroder,
2008). Regression trees are particular types of decision tree
designed to work with continuous response variables, while
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