
Self-adaptive ruin-and-recreate algorithm for minimizing total flow time
in no-wait flowshops

Kuo-Ching Ying a, Shih-Wei Lin b,c,⇑, Wen-Jie Wu b

aDepartment of Industrial Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
bDepartment of Information Management, Chang Gung University, Taoyuan, Taiwan
c Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan

a r t i c l e i n f o

Article history:
Received 16 September 2015
Received in revised form 25 April 2016
Accepted 21 August 2016
Available online 22 August 2016

Keywords:
Scheduling
No-wait flowshop
Total flow time
Self-adaptive ruin-and-recreate algorithm

a b s t r a c t

This paper studies the no-wait flowshop scheduling problem with total flow time criterion, which is NP-
complete in the strong sense. A self-adaptive ruin-and-recreate (SR&R) algorithm is proposed to solve this
complex problem. The performance of the proposed SR&R algorithm is compared with that of the best
available heuristics and the SR&R algorithm without the self-adaptive mechanism by application to a
set of classic benchmark instances that were presented by Taillard. Computational results show that
the proposed SR&R algorithm improves upon the best known solutions in more than half benchmark
instances, and provides the best known solutions for the remaining unimproved instances in a reasonable
computational time. The contribution of this work is to provide an easy-to-use approach to solve effec-
tively and efficiently this practical but complex scheduling problem.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The permutation flowshop scheduling problem (PFSP) has been
a major concern for scheduling researchers who have proposed
various algorithms to effectively and efficiently solve it (Chang &
Chen, 2014; Chang, Chen, Tiwari, & Iquebal, 2013; Chen, Chang,
Cheng, & Zhang, 2012; Chen, Chang, & Lin, 2014; Chen, Chen,
Chang, & Chen, 2012; Hsu, Chang, & Chen, 2015). This paper deals
with the no-wait flowshop scheduling problem (NWFSP) with the
objective of minimizing the total flow time. Consistent with the
standard classification scheme that was proposed by Graham,
Lawler, Lenstra, and Rinnooy Kan (1979), this problem can be syn-
thetically denoted as an FmjnwtjPCj problem, where Fm repre-
sents a flowshop problem with m machines; nwt means that jobs
are not allowed to be held up between two successively used
machines, usually owing to technological restrictions of the manu-
facturing process, and

P
Cj denotes that the objective is to mini-

mize the total flow time, which criterion is one of the most-
studied optimization criteria for the NWFSP. Minimizing the total
flow time can lead to a stable or uniform utilization of resources,
a rapid turn-around of jobs, and minimization of the in-process
inventory (Rajendran, 1994). If all jobs are assumed to be ready

for processing at the beginning of the scheduling horizon, then
minimizing the total flow time is equivalent to minimizing the
sum of completion times and, consequently, the mean processing
time. The FmjnwtjPCj problem is a typical scheduling problem
that has important applications in myriad industries, including
the steel, pharmaceutical, chemical, plastic, electronic and food-
processing industries (Sapkal & Laha, 2013). The modern agile
manufacturing system, in which robots and industrial machines
implement a highly coordinated process, can be modeled as an
NWFSP (Bertolissi, 2000). For a review of the various applications
of the FmjnwtjPCj problem, see Pan, Tasgetiren, and Liang
(2008). Despite its widely applications, the NWFSP is one of the
most challenging problems in the field of scheduling, and is NP-
complete (Rock, 1984) in the strong sense, even in the two-
machine case.

The FmjnwtjPCj problem was first posed by Van Deman and
Baker (1974). Only a few algorithms have been proposed for solv-
ing it. With respect to exact methods, Van Deman and Baker (1974)
presented a set of procedures for generating the lower bounds and
then found the optimal solution by applying a branch and bound
(B&B) algorithm. Their experimental results revealed that the pro-
posed B&B algorithm can solve the FmjnwtjPCj problem as rapidly
as it can solve the traditional flowshop problem with makespan as
the performance criterion. Given the NP-nature of the FmjnwtjPCj

problem, only small instances can be solved optimally using these
exact algorithms with an acceptable computational time and

http://dx.doi.org/10.1016/j.cie.2016.08.014
0360-8352/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Department of Information Management, Chang Gung
University, Taoyuan, Taiwan.

E-mail address: swlin@mail.cgu.edu.tw (S.-W. Lin).

Computers & Industrial Engineering 101 (2016) 167–176

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2016.08.014&domain=pdf
http://dx.doi.org/10.1016/j.cie.2016.08.014
mailto:swlin@mail.cgu.edu.tw
http://dx.doi.org/10.1016/j.cie.2016.08.014
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


memory requirements. Therefore, heuristic algorithms that yield
(near-) optimal solutions in a reasonable computational time with
reasonable memory requirements have become viable for tackling
the FmjnwtjPCj problem, and especially for scheduling a large
number of jobs. However, relevant literature on the FmjnwtjPCj

problem is limited.
The limited heuristic algorithms for solving the FmjnwtjPCj

problem can be broadly classified into two categories, which are
constructive heuristics and improvement heuristics. With respect
to constructive heuristics, Rajendran and Chaudhuri (1990) were
the first to present a simple construction heuristic for solving the
FmjnwtjPCj problem. Ten years later, Bertolissi (2000) presented
a constructive heuristic that was based on job insertion and com-
pared it with one of the constructive heuristics of Rajendran and
Chaudhuri (1990), and with another that was proposed by
Bonney and Gundry (1976) for solving the NWFSP with the objec-
tive of minimizing makespan. His experimental results indicated
that his heuristic outperformed the other two. Fink and Voß
(2003) developed two simple construction heuristics, namely near-
est neighborhood (NN) and cheapest insertion (Chins), as well as a
local search procedure (Pilot-1-Chins) to improve the solution to
the problem. Their computational results showed that Chins
clearly outperforms NN but they did not compare their methods
with the aforementioned constructive heuristics. Aldowaisan and
Allahverdi (2004) presented six constructive heuristics for solving
the FmjnwtjPCj problem. Experimental results revealed that
among them, the PH1p heuristic outperformed the others and
the two constructive heuristics of Rajendran and Chaudhuri
(1990). Later, Framinan, Nagano, and Moccellin (2010) presented
a new constructive heuristic that was based on an analogy with
the two-machine problem to select a candidate job to be appended
to the incumbent partial solution. Their computational results
demonstrated that the proposed constructive heuristic outper-
formed existing constructive heuristics and was competitive with
a highly time-consuming local search procedure. Gao, Pan,
Suganthan, and Li (2013) proposed two constructive heuristics -
the improved standard deviation heuristic (ISDH) and the
improved Bertolissi heuristic (IBH) - for solving the FmjnwtjPCj

problem, and then utilized the insertion-based local search method
and an iteration operator to improve their solutions. Recently, Laha
and Sapkal (2014) developed a constructive heuristic, called the LS
heuristic, which is based on the assumption that the priority of a
job in the initial sequence of jobs is given by the sum of its process-
ing times on the bottleneck machines. Their computational results
revealed that the LS heuristic significantly outperformed the best
known heuristics while retaining a time complexity of O(n2).
Although these constructive heuristics are rather easy to under-
stand and can be straightforwardly implemented, their lack of
robustness inhibits their application in practice. This major prob-
lem may be partially solved by using improvement heuristics,
which can yield more robust solutions with polynomial time
complexity.

In 1996, Chen, Neppalli, and Aljaber (1996) became the first to
apply improvement heuristics, having a genetic algorithm (GA) for
solving the FmjnwtjPCj problem. Their computational results
revealed that GA was an effective technique for solving the
scheduling problem of interest. Fink and Voß (2003) proposed a
steepest descent (SD) algorithm, an iterated steepest descent
(ISD) algorithm, a simulated annealing (SA) algorithm and a reac-
tive Tabu search (RTS) algorithm to solve the same problem. Their
computational results demonstrated that high-quality solutions
could be obtained efficiently by applying the SA and RTS algo-
rithms without knowledge of their inner workings. Then, Shyu,
Lin, and Yin (2004) applied an ant colony optimization (ACO) algo-
rithm for application to the two-machine case. Computational

results demonstrated that the ACO algorithm performed impres-
sively in solving the scheduling problem of interest. Kumar,
Prakash, Shankar, and Tiwari (2006) presented a psycho-clonal
algorithm, which outperformed both the GA of Chen et al. (1996)
and the six constructive heuristics of Aldowaisan and Allahverdi
(2004). Tasgetiren, Pan, Suganthan, and Liang (2007) presented a
discrete differential evolution (DDE) algorithm that was hybridized
with the variable neighborhood descent (VND) algorithm to solve
the FmjnwtjPCj problem. Their computational results revealed
that the DDE algorithm outperforms the SA and TS algorithms of
Fink and Voß (2003). Subsequently, Pan et al. (2008) proposed an
improvement heuristic, denoted as DPSOvnd, that hybridized the
discrete particle swarm optimization algorithmwith the VND algo-
rithm and further improved upon the best known solutions, which
were obtained by Fink and Voß (2003). Their experimental results
indicated that the DPSOvnd algorithm yielded results that were
either competitive with or better than those reported in the litera-
ture. Gao, Pan, and Li (2011) developed a discrete harmony search
algorithm (DHS) for solving the FmjnwtjPCj problem. Their com-
putational results revealed their algorithm outperformed the
DPSOvnd algorithm of Pan et al. (2008). Gao, Pan, Li, and Wang
(2012) proposed a hybrid harmony search (HHS) algorithm for
solving the same problem. Computational simulations based on
the well-known benchmarks showed that HHS was superior to a
hybrid differential evolution algorithm and a hybrid particle
swarm optimization algorithm that had been proposed for solving
other FSPs. Recently, Zhu, Li, and Wang (2009) proposed an objec-
tive increment-based iterative greedy algorithm, denoted FIG, and
the computational results demonstrated that it outperformed
PH1p but underperformed the DPSOvnd algorithm. Zhu and Li
(2015) developed an iterative search (IS) algorithm for solving
the FmjnwtjPCj problem; they compared it with the best existing
algorithms using classical benchmark instances and revealed that
it outperformed them.

The ruin-and-recreate (R&R) algorithm is the novel improve-
ment heuristic presented by Schrimpf, Schneider, Stamm-
Wilbrand, and Dueck (2000) for solving traveling salesman prob-
lems, vehicle routing problems and network optimization prob-
lems. The main advantages of the R&R are its simplicity,
effectiveness and suitability for complex optimization problems,
such as quadratic assignment problems (Misevicius, 2003), permu-
tation flowshop scheduling problems (Burke et al., 2009), bin-
packing problems (Burke et al., 2009) and paratransit scheduling
problems (Häll & Peterson, 2013). As astounding results have been
obtained for some classical optimization problems, in this work we
present a self-adaptive ruin-and-recreate (SR&R) algorithm for
solving the FmjnwtjPCj problem. The main idea of the proposed
SR&R algorithm is the use of a new constructive heuristic based
on the famous NEH heuristic (Nawaz, Enscore, & Ham, 1983) to
generate an initial solution, which is then iteratively improved
by a self-adaptive ruin-and-recreate procedure with a speed-up
method. The presented self-adaptive mechanism dynamically
adjusts the size and range of the neighborhood during the ruin
phase, thus enabling the incumbent solution to escape from the
local minima by enlarging the perturbation, while the proposed
speed-up method accelerates the evaluation of the neighborhoods
of the insertion operation during the recreate phase. The Boltz-
mann function, which is commonly used in the annealing process
in the SA algorithm (Lin, Lu, & Ying, 2011; Lu, Lin, & Ying, 2012;
Ying, Lin, & Lu, 2011), is also employed to decide whether or not
to update the incumbent solution with the new solution in order
to escape from the local minima. To the best of our knowledge, this
work provides the first reported application of the ruin-and-
recreate (R&R) algorithm to the FmjnwtjPCj problem. The remain-
der of this paper is structured as follows. Following a brief

168 K.-C. Ying et al. / Computers & Industrial Engineering 101 (2016) 167–176



Download English Version:

https://daneshyari.com/en/article/5127883

Download Persian Version:

https://daneshyari.com/article/5127883

Daneshyari.com

https://daneshyari.com/en/article/5127883
https://daneshyari.com/article/5127883
https://daneshyari.com

