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a b s t r a c t

This paper considers a problem of scheduling on parallel machines where each machine requires main-
tenance activity once over a given time window. The objective is to find a coordinated schedule for jobs
and maintenance activities to minimize the scheduling cost represented by either one of several objective
measures including makespan, (weighted) sum of completion times, maximum lateness and sum of late-
ness. The problem is proved to be NP-hard in the strong sense in each case of the objective measures.
Some restricted cases of the problem are also characterized for their complexities, for which the associ-
ated dynamic programming algorithms are derived.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction and problem description

The majority of machine scheduling models often assume that
machines are available all the time for processing jobs over their
associated planning horizon. However, this assumption is not real-
istic in many manufacturing situations, since machines require
maintenance activity periodically to prevent malfunctions. During
the associated maintenance activity machines are not available for
processing jobs. Maintenance encompasses activities including
installation, vehicles, equipment, or some physical assets enabling
effective work. Preventive maintenance is an activity that a priori
prevents potential faults resulting in malfunctions and also pre-
vents critical non-availability of the system. Note that maintenance
costs cover a big percentage of the total operating costs, making it
very reasonable to include maintenance activities in the produc-
tion schedule (Ángel-Bello, Álvarez, Pacheco, & Martínez, 2011).

In the airline industry, planned maintenance activities can
reduce production time by as much as 15% (Laalaoui & M’Hallah,
2016). Moreover, especially in semiconductor manufacturing, it is
often observed that machines are idle while waiting for mainte-
nance personnel to do preventive maintenance, even though jobs
are waiting. Thus, the operations managers have to create their
production schedule carefully so as to minimize their costs while
avoiding unexpected resource unavailability. Obviously, careful
coordination between maintenance activity and job processing
would result in a better schedule, which is the motivation for this
study. Here, the authors consider a coordinated scheduling model

that takes into account such associated machine maintenance
activities.

In the literature, scheduling problems with maintenance activ-
ities incorporated can be classified into ‘‘fixed” and ‘‘coordinated”
models. The first model considers the maintenance activity dura-
tions, which are known and fixed in advance, so that the starting
and completion times of the maintenance activity are given. The
problem of scheduling jobs with this type of maintenance has often
been referred to in the literature as ‘‘scheduling with machine avail-
ability constraints”. Ángel-Bello et al. (2011), Hfaiedh, Sadfi, Kacem,
and Hadj-Alouane (2015), Laalaoui and M’Hallah (2016), Molaee,
Moslehi, and Reisi (2011), and Sadfi, Penz, Rapine, Blazewicz, and
Formanowicz (2005) have studied various single machine prob-
lems subject to various types of machine availability constraints.
Fu, Huo, and Zhao (2011), Gedik, Rainwater, Nachtmann, and
Pohl (2016), Liao and Sheen (2008), Mellouli, Sadfi, Chu, and
Kacem (2009), and Wang and Cheng (2015) have studied various
parallel machine problems allowing various types of unavailable
intervals for machines. Cheng and Wang (1999), Cheng and
Wang (2000), Kubiak, Blazewicz, Formanowicz, Breit, and
Schmidt (2002), Kubzin, Potts, and Strusevich (2009), and Lee
(1997, 1999) have studied a two machine flow shop problem
allowing various types of unavailable intervals for machines.

The second model is concerned with simultaneously determin-
ing when to conduct each maintenance activity and when to pro-
cess each job. Some research has been conducted on scheduling
maintenance activities and jobs jointly. For example, Graves and
Lee (1999) and Cassady and Kutanoglu (2003) have studied single
machine problems allowing maintenance activities to be scheduled
jointly with jobs. Aggoune (2004) has studied a flowshop machine
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problem allowing maintenance activities to be made within any
given time window. Costa, Cappadonna, and Fichera (2016), Lee
and Chen (2000), and Sun and Li (2010) have studied some parallel
machine problems, subject to the constraint that maintenance
activity on each machine should be made within a given time win-
dow. Specifically, Lee and Chen (2000) have studied a parallel
machine problem to minimize the weighted sum of completion
times of jobs. They have proved that the problem is NP-hard and
have derived a branch and bound algorithm based on the column
generation approach. Sun and Li (2010) have researched two
two-machine parallel machines with the makespan or sum of com-
pletion times. Costa et al. (2016) have developed a genetic algo-
rithm for a parallel machine problem.

This paper considers a coordinated scheduling model on paral-
lel machines where each machine requires maintenance activity
once over a given time window, as in Lee and Chen (2000). More-
over, two different maintenance activities are considered. The first
one allows more than one machine to be put under maintenance
simultaneously if necessary and is called ‘‘independent case”. The
second one, called ‘‘dependent case”, allows only one machine to
be put under maintenance at any time point due to insufficient
maintenance resources (equipment or person); hence, the mainte-
nance activity duration on machines cannot be overlapped onto
each other. The model proposed here considers several different
objectives of minimizing scheduling costs, each being represented
by either one of several objective measures including makespan,
(weighted) sum of completion times, maximum lateness and
sum of lateness. Each of these scheduling problems is proved to
be NP-hard in the strong sense and then some solution properties
are characterized. Therewith, solution algorithms are derived using
a dynamic programming (DP) approach. A few restricted cases of
the problems are also analyzed for their complexities.

The proposed problem is stated in detail as follows: there are n
jobs available at time zero to be scheduled on m identical parallel
machines without preemption. Maintenance on each machine
must be completed exactly once within the given time length T,
that is, during the given time window [0,T], where the mainte-
nance activity requires a maintenance time length t, while any
job processing is allowed after time T. It is assumed that TP t
and TPmt in the independent and dependent cases, respectively.
processing time, weight, due date, and completion time of job j are
denoted by pj, wj, dj and Cj, respectively. It is assumed that t, T, pj’s,
wj’s and dj’s have integer values. Moreover, this paper does not
allow any preemption, so that a job should not be allowed to start

until completing its associated maintenance activity if there is not
enough time to complete any job processing before starting main-
tenance activity on the machine, which may incur an occurrence of
machine idle time.

The standard classification scheme for scheduling problems
(Pinedo (1995)) a|b|c is adapted in this paper where a indicates
the scheduling environment, b describes the job characteristics or
restrictive requirements, and c defines the objective function to
be minimized. Accordingly, the proposed problem is represented
by an identical parallel machines problem with a = ‘‘P”. For b, the
problem considers ‘‘ind”, ‘‘dep”, ‘‘pj = p”, ‘‘dj = d” and ‘‘m = q” con-
straints, where ‘‘ind”, ‘‘dep”, ‘‘pj = p”, ‘‘dj = d” and ‘‘m = q” indicate
the independent case, the dependent case, all identical processing
times case, all identical due dates case, and the q identical parallel
machines case, respectively. Moreover, for c, the objective function
of the proposed problem may be represented by one of the
following:

Cmax ¼ max
16j6n

Cj ðmakespanÞ;
Xn
j¼1

Cj ¼ sum of completion times;

Xn
j¼1

wjCj ¼ weighted sum of completion times;

Lmax ¼ max
16j6n

fCj � dj;0g ðmaximum latenessÞ;
Xn
j¼1

Lj ¼
Xn

j¼1

maxðCj � dj;0Þ ðsum of latenessÞ:

Table 1 provides the complexities of all of the tested scheduling
problems associated with various objective measures. In the table,
the complexity orders represent the computational time complex-
ities of the associated DP algorithms, which are derived in Sections
2.1 and 4, where R1, R2, R3 and R4 are derived in Theorems 10 and
11 in Section 2.

2. General case analysis

This section will prove that the problems P|ind|c and P|dep|c

are NP-hard in the strong sense, where c 2 Cmax;
Pn

j¼1Cj;
n

Pn
j¼1wjCj; Lmax;

Pn
j¼1Ljg.

Table 1
Complexities of the scheduling problems.

Objective Additional problem characteristics Independent case Dependent case

Cmax Unary NP-hard, O(nm(R1 + R2)m) Unary NP-hard, O(nmR3
mR4

mTm)
m = q (P2) Binary NP-hard, O(nq(R1 + R2)q) Binary NP-hard, O(nqR3

qR4
qTq)

pj = p O(n) Unknown, O(m(n + 1)3m)
Pn

j¼1Cj Unary NP-hard, O(nm(R1 + R2)m) Unary NP-hard, O(nmR3
mR4

mTm)
m = q (P2) Binary NP-hard, O(nq(R1 + R2)q) Binary NP-hard, O(nqR3

qR4
qTq)

pj = p O(n) Unknown, O(m(n + 1)3m)
Pn

j¼1wjCj Unary NP-hard, O(nmR1
2mR2

m) Unary NP-hard, O(nmR3
mR4

mTm)
m = q (P2) Binary NP-hard, O(nqR1

2qR2
q) Binary NP-hard, O(nqR3

qR4
qTq)

pj = p O(nlogn) Unknown, O(m(n + 1)3m)

Lmax Unary NP-hard, O(nm(R1 + R2)m) Unary NP-hard, O(nmR3
mR4

mTm)
m = q (P2) Binary NP-hard, O(nq(R1 + R2)q) Binary NP-hard, O(nqR3

qR4
qTq)

pj = p O(nlogn) Unknown, O(m(n + 1)3m)
dj = d Unary NP-hard, O(nm(R1 + R2)m) Unary NP-hard, O(nmR3

mR4
mTm)

Pn
j¼1Lj Unary NP-hard, O(nm(R1 + R2)m) Unary NP-hard, O(nmR3

mR4
mTm)

m = q (P2) Binary NP-hard, O(nq(R1 + R2)q) Binary NP-hard, O(nqR3
qR4

qTq)
pj = p O(nlogn) Unknown, O(m(n + 1)3m)
dj = d Unary NP-hard, O(nm(R1 + R2)m) Unary NP-hard, O(nmR3

mR4
mTm)
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