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a b s t r a c t

The meshless Galerkin boundary node method is presented in this paper for boundary-only analysis of

three-dimensional elasticity problems. In this method, boundary conditions can be implemented

directly and easily despite the employed moving least-squares shape functions lack the delta function

property, and the resulting system matrices are symmetric and positive definite. A priori error

estimates and the consequent rate of convergence are presented. A posteriori error estimates are also

provided. Reliable and efficient error estimators and an efficient and convergent adaptive meshless

algorithm are then derived. Numerical examples showing the efficiency of the method, confirming the

theoretical properties of the error estimates, and illustrating the capability of the adaptive algorithm,

are reported.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Meshless (or meshfree) methods to obtain numerical solutions
for partial differential equations without resorting to an element
frame have attracted much attention and gained great success in
the field of computational science and engineering in the past few
decades [1,2]. Compared to the finite element method (FEM) and
the boundary element method (BEM), the core of this type of
method is to alleviate the difficulty of meshing and remeshing the
entire structure by simply adding or deleting nodes. Although
many kinds of meshless methods have been proposed, these
methods can be simply divided into the domain-type and the
boundary-type. Several domain-type meshless methods, such as
the element free Galerkin (EFG) method [1–3], the reproducing
kernel particle method (RKPM) [1], the point interpolation
method (PIM) [2], the generalized FEM [4,5], the h–p meshless
method [1], the smoothed FEM [6] and the finite point method
(FPM) [7] have been proposed and gained noticeable progress in
solving a wide range of boundary value problems.

Boundary integral equations (BIEs) are attractive computa-
tional techniques for linear and exterior problems as they can
reduce the dimensionality of the original problem by one.
Boundary-type meshless methods are developed by the combina-
tion of the meshless idea with BIEs, such as the boundary node
method (BNM) [8,9], the hybrid BNM [10–13] and the boundary

face method [14]. In the three methods, the moving least-squares
(MLS) approximations are used to generate the shape functions on
the boundary of a domain. However, because MLS shape functions
lack the delta function property, boundary conditions in these
meshless methods cannot be implemented as easily as in the FEM
or the BEM. The strategy employed in them to impose boundary
conditions involves a new definition of the discrete norm used for
the construction of the MLS approximations, which adds to the
number of system equations. In order to construct meshless shape
functions with delta function properties, Liu [2] has introduced the
PIM into BIEs and produced boundary PIMs. Besides, Li et al. [15]
have introduced the radial basis point interpolation into the
hybrid displacement variational formulation and produced the
hybrid radial BNM. Moreover, Peng and Cheng [16] have devel-
oped an improved MLS approximation that uses weighted ortho-
gonal polynomials as basis functions to restore the delta function
property of the MLS. The improved MLS scheme has been inserted
into BIEs to propose a boundary-type meshless method called the
boundary element-free method [16].

Li and Zhu [17] have recently proposed a boundary-type
meshless method called the Galerkin boundary node method
(GBNM). The GBNM combines a variational version of BIEs for
governing equations with the MLS approximations for generation
of the trial and test functions. Unlike other MLS-based methods
mentioned above, boundary conditions in the GBNM do not
present any difficulty and can be implemented with ease via
multiplying the MLS shape function and integrating on
the boundary. Another outstanding feature of the GBNM is
the conservation of the symmetry and positive definiteness of
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the variational problems in the process of numerical implementa-
tion. This method has been successfully tried for 2D problems in
potential theory [17,18], elasticity [19] and fluid mechanics
[20,21]. Very recently, the method has been extended to solve
3D problems in potential theory [22] and fluid mechanics [23].
The present paper extends the frontiers of the GBNM into solving
problems in 3D elasticity.

A priori error estimates, which ensure convergence of numer-
ical methods, are crucial in meshless research. The associated
mathematical proofs guarantee that meshless methods will con-
verge to the true solution. During the past two decades, a large
amount of research has been devoted to deriving a priori error
estimation for domain-type meshless methods such as the h–p

meshless method [1], the RKPM [1], the EFG [3], the generalized
FEM [4], the smoothed FEM [2,6] and the FPM [7]. Nevertheless,
although boundary-type meshless methods perform very well in
practice, not much is rigorously known on the a priori error
analysis of these schemes. Until now, a first a priori error analysis
of the boundary-type meshless methods was given by Li and Zhu
for the GBNM for 2D problems [17–21] and for 3D problems in
potential theory [22] and fluid mechanics [23]. Hence, one goal of
this paper is to establish a rigorous a priori error analysis of the
GBNM for 3D elasticity problems. The optimal asymptotic con-
vergence rates are given in Sobolev spaces.

In meshless methods, since no predefined nodal connectivity
or mesh is employed for field variable approximation, nodes can
be inserted or removed conveniently. This prominent feature
makes meshless methods especially suited for self-adaptive
techniques. Indeed, the subject of a posteriori error estimates
and corresponding adaptive procedures is central to the effective
application of meshless methods for practical engineering com-
putation. In recent years, a large amount of work has been
performed concerning adaptive analysis based on a posteriori
error estimation for domain-type meshless methods such as the
h–p meshless method [24], the EFG method [2,25], the RKPM [26],
the FPM [27] and the PIM [28]. Significant progress has been
achieved in the theory and implementation of the adaptive
procedures for these meshless methods. For boundary-type
meshless methods, Chati et al. [9,29] have pioneered error
indicators and an adaptive algorithm for the BNM using hyper-
singular residual techniques similar to those used in the BEM [9].
Besides, Guo and Chen [30] have developed an adaptive algorithm
for the meshless local BIE method based on the dual error
indicators.

Very recently, the GBNM has been extended for a posteriori
error estimate and adaptivity for 2D potential problems based on
the difference between numerical solutions obtained using two
successive nodal arrangements [31]. Another aim of this paper is
to extend the a posteriori error results to 3D elasticity. The
formulation of an accurate and reliable a posteriori error estimate
is presented. Then, a posteriori error estimator for the error
control of numerical solutions is derived. This error estimator
has an upper and a lower bound by the constant multiples of the
exact error in the energy norm. That is, this estimator is reliable
and efficient. Finally, based on the a posteriori error estimation
and a localization technique, computable local error indicators
and an efficient and convergent adaptive meshless algorithm for
h-adaptivity are established.

The rest of this paper is organized as follows. In Section 2,
detailed formulations of the GBNM for 3D elasticity problems are
provided. Section 3 contains a priori error analysis and numerical
examples showing the performance of the GBNM. In Section 4, a
posteriori error analysis and adaptive algorithm are given.
Numerical examples illustrating the capability of the adaptive
algorithm are also presented in this section. Finally, conclusions
are summarized in Section 5.

2. The GBNM for 3D elasticity

Consider the following 3D elasticity problem:

rr¼ 0 in O
u9G ¼ u on G

(
ð1Þ

where r is the gradient operator, r is the stress tensor, O is a
bounded or unbounded domain in R3 with boundary surface G,
u¼ ðu1,u2,u3Þ is the displacement field, and u ¼ ðu1,u2,u3Þ is a
given function on G. A general point of O is denoted by
x¼ ðx1,x2,x3Þ. If G is a smooth open surface piece with a piecewise
smooth boundary curve and O¼R3

\G, then problem (1) is the so-
called screen crack problem.

Let u be given satisfying uAH�1=2
ðGÞ :¼ ðH�1=2

ðGÞÞ3, then
problem (1) has a unique solution u. The solution can be
expressed as [32,33]

ujðyÞ ¼
X3

i ¼ 1

Z
G

qiðxÞUijðx,yÞ dSx, j¼ 1;2,3, yAO ð2Þ

in which q¼ ðq1,q2,q3Þ is the jump of the boundary traction n � r
across G, n¼ ðn1,n2,n3Þ is the normal exterior to G, and Uij is the
singular Kelvin fundamental solution

Uijðx,yÞ :¼
1

16pGð1�nÞr
½ð3�4nÞdijþr,ir,j�, i,j¼ 1;2,3 ð3Þ

where G is the shear modulus, n is the Poisson ratio, dij is the
Kronecker symbol, r¼ 9x�y9 and r,i ¼ ðxi�yiÞ=r. Eq. (2) gives the
indirect integral equations of 3D elasticity. By direct method, we
can also get the direct integral equations and dual integral
[34,35].

Using Eq. (2) and the boundary condition of problem (1) leads
to the following BIEs:

ðAqÞjðyÞ ¼
X3

i ¼ 1

Z
G

qiðxÞUijðx,yÞ dSx ¼ ujðyÞ, j¼ 1;2,3, yAG ð4Þ

which are suitable for the solution of the exterior as well as the
interior problem. Here the boundary integral operator A :
H�1=2

ðGÞ-H1=2
ðGÞ is continuous and bijective. These BIEs have

a unique solution in H�1=2
ðGÞ and admit the variational problem:

Find qAH�1=2
ðGÞ such that

/Aq,q0SL2
ðGÞ ¼/u,q0SL2

ðGÞ, 8q
0 ¼ ðq01,q02,q03ÞAH�1=2

ðGÞ ð5Þ

where

/Aq,q0SL2
ðGÞ :¼

X3

i,j ¼ 1

Z
G

Z
G

qiðxÞUijðx,yÞq0jðyÞ dSx dSy

/u,q0SL2
ðGÞ :¼

X3

j ¼ 1

Z
G

ujðyÞq
0
jðyÞ dSy ð6Þ

To carry out integrations in the variational problem (5), the
boundary surface G is discretized into cells. Assume that G is
piecewise smooth and can be partitioned into finitely many
smooth pieces Uk. Each Uk can be considered to be the image of
Gk by a smooth bijection jk, i.e., Uk ¼jkðGkÞ, where Gk is a
bounded polygonal domain in R2. Let T kh be a triangulation of
Gk by triangles. On each triangulation T kh, we construct the
b-degree interpolant function of jk denoted by jkh. Then the
image of Gk by the mapping jkh constitutes one piece Ukh of the
surface Gh which we take as the background cell. Consequently,
Gh is a connected parametric surface of degree b. After triangula-
tion, we assume that Gh contains N cells Gi with an associated
triangulation T h :¼ fG1,G2, . . . ,GNg, where the parameter h

denotes the nodal spacing.

X. Li / Engineering Analysis with Boundary Elements 36 (2012) 993–1004994



Download English Version:

https://daneshyari.com/en/article/512792

Download Persian Version:

https://daneshyari.com/article/512792

Daneshyari.com

https://daneshyari.com/en/article/512792
https://daneshyari.com/article/512792
https://daneshyari.com

