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The forward problem in DOT can be modeled in a frequency domain as a diffusion equation with Robin
boundary conditions. In case of multilayered geometries the forward problem can be treated as a set of
coupled equations. In this paper we present the solution for diffuse light propagation in a four-layer
spherical model using Boundary Element Method. Additionally, we compare overlapping with non-
overlapping Domain Decomposition Methods applied to this problem to improve its efficiency.
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1. Introduction

In recent years Optical Tomography (OT) has emerged as a
highly active and viable field of research, due to advances in both
measurement technology and theoretical and practical under-
standing of the nature of the image of reconstruction problem. For
recent reviews see [1-7]. An increasingly active topic within this
field is the development of an efficient and accurate method for
calculating the intensity of light internal to, and on the boundary of
an object under experimental investigation, sometimes referred to
as the forward problem.

Existing methods are either deterministic, based on the solutions
to governing equations, or stochastic, based on the simulations of
the individual scattering and absorption events undertaken by each
photon. The former includes analytical expressions based on Green
functions [8,9] and numerical methods based on Finite Difference
Method (FDM) or Finite Element Methods (FEMs) [10-14]. However,
a generally applicable model of the forward problem in three-
dimensional space is still not a fully solved problem.

In this paper we introduce another standard technique for the
solution of Partial Differential Equations (PDEs) in general geome-
tries: the Boundary Element Method (BEM), which has received
substantial attention in numerical modeling of fields [15-21]. The
advantages and disadvantages of BEM are well known [22-25] and
they will not be repeated here, but instead we will concentrate on
some specific features useful in OT. Recently BEM has been used in
Diffusing-wave spectroscopy for determining the correlation function
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for different boundary conditions and source properties in a cone-
plate geometry [20], but has received very little attention in OT.

Like Finite Element Method (FEM), the Boundary Element
Method (BEM) provides a general numerical tool for the solution
of complex engineering problems. In the last decades, the range of
its applications has remarkably been enlarged.

Nevertheless, the BEM still demands an explicit expression of
a fundamental solution, which is only known in simple cases.
Therefore, in Optical Tomography BEM is restricted to a diffusion
approximation of transport equation.

In recent Optical Tomography applications, researcher’s atten-
tion is focused on three-dimensional problems. They are a lot
more difficult than those defined in the two-dimensional space.
Mainly due to the geometry which demands a sophisticated
discretization with enormously big number of unknowns. Such
problems are named ‘large scale problems’.

BEM is characterized by the boundary-only property of the
algorithm. This property reduces the number of unknowns in
BEM as compared to those in methods of the domain type such as
Finite Difference Method (FDM) or Finite Element Method (FEM).

However, the reduced number of unknowns does not necessarily
lead to improved efficiency, because BEM generally produces a fully
populated asymmetric matrix of coefficients, while the matrices for
FDM or FEM are usually sparse and very often symmetric.

Because of this drawback, BEM has so far been considered to
be less efficient than these domain type competitors in large scale
problems. However, the situation is changing with the recent
breakthrough introduced by the so-called ‘fast-BEMs’ based on
techniques such as multiple methods [26], panel clustering, the
use of wavelet bases, etc.

The fast BEMs can compute potential functions at all colloca-
tion points with O(N)-O(N(log N)™) (m > 0) operations in pro-
blems with N unknowns.
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This is a dramatic improvement over the conventional BEMs
which have O(N?) number of operations. Development of the fast
BEM is certain to further enhance the status of BEM as a solver of
large scale problems.

2. Governing equations

Diffuse Optical Tomography in medicine aims to recover the
optical properties of biological tissue from the measurement of the
transmitted light made at multiple points on the surface of the body.
This boundary data measurements can be used to recover the spatial
distribution of internal absorbtion and scattering coefficients. It is a
non-invasive modality and can generate images of parameters
related to blood volume and oxygenation [5].

The main topic within this field is the development of an efficient
and accurate method for calculating the intensity of light trans-
mitted or reflected from the object under experimental investiga-
tion. A general model of light propagation can be described using the
Radiative Transfer Equation, but a simpler model that can be derived
from this equation in the case of sufficiently high scattering is the
diffusion equation with Robin boundary conditions [27].

In this paper it is assumed that the object being studied is
considered as a set of disjoint simply connected regions with
constant optical coefficients within each region, but that may differ
between regions. In this case the diffusion equation can be replaced
by a set of Helmholtz equations for each domain, together with
interface conditions. For this problem, analytical solution is not
easily available. Although volume based PDE solvers such as FDM or
FEM can certainly be applied to this problem, there are often
practical difficulties in constructing meshes for general geometries
that respect the interfaces accurately. In contrast, the use of boundary
integral methods (e.g. BEM) involves only representation of the
surface meshes and can be much easier to implement.

The problem of Optical Tomography in a highly diffusive body
Q with boundary I' can be modeled by the use of the diffusion
equation in the frequency domain form [4,9]
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with Robin boundary conditions
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where weR™" is the frequency modulation, @ is the photon
density, c is the velocity of light, g is an internal source of light
in medium, h™ is an incoming flux, o is a boundary term which
incorporates the refractive index mismatch at the tissue-air
boundary, n is the outward normal at the boundary I', x and y,
are the diffusion and absorption coefficients, respectively. We
define, k =1/3(u, + 1), where y; is the reduced scattering coeffi-
cient [28,9]. We use the notation r for a position vector in Q and
m for a position vector restricted to the surface I'.
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3. Singular and nearly singular integrals

In three-dimensional boundary element analysis, computation
of integrals is an important aspect since it governs the accuracy of
the analysis and also because it usually takes the substantiable
part of the CPU time.

The integrals which determine the influence matrices, the inter-
nal field and its gradients contain nearly singular kernels of order
1/R* (¢=1,2,3,4,...) where R is the distance between the source
point and the integration point on the boundary element [29].

For planar elements, analytical integration may be possible
[17]. However, it is becoming increasingly important, in practical

boundary element codes, to use curved elements, such as the
isoparametric elements, to model general curved surfaces [30].
Since analytical integration is not possible for general isopara-
metric curved elements, one has to rely on numerical integration.

When the distance between the source point and the element
over which the integration is performed is sufficiently large,
compared to the element size, the standard Gauss-Legendre
quadrature formula works efficiently.

However, when the source is actually on the element, the
kernel becomes singular and the straight forward application of
the Gauss-Legendre quadrature formula breaks down. These
integrals will be called singular integrals. Singular integrals occur
when calculating the diagonals of the coefficient matrix.

When the source is not on the element, but very close to the
element, although the kernel is regular in the mathematical sense,
the value of the kernel changes rapidly in the neighborhood of the
source point. In such case the standard Gauss-Legendre quad-
rature formula is not practical, since it would require a huge
number of integration points to achieve the required accuracy.

These integrals will be called nearly singular integrals. Nearly
singular integrals occur in practice when calculating influence
matrices for thin structures, where distances between different
elements can be very small compared to the element size. Such
situation is very common for scull or CSF layer modeling in
Impedance or Optical Tomography. They also occur when calcu-
lating the field or its derivatives at the internal point, very close to
the boundary element. Numerous research works have already
been published on this subject for example [31-34,19,29,16].

In this paper the coordinate transformation methods are used
(see for example Section 6). This method is transforming a
triangular region (if the triangular boundary elements are used)
into a quadrilateral region, so that the node corresponding to the
singularity is expanded to an edge of the quadrilateral, thanks to
that the singularity is weakened.

Nearly singular integrals turn out to be more difficult and
expensive to calculate compared to singular integrals. They are
becoming more and more important in practical boundary ele-
ment codes, since the ability and efficiency to calculate nearly
singular integrals governs the code’s versatility in treating objects
containing thin structures (scull or CSF layer of the human head).
The reader interested in this particular problem may consult [29]
where a new quadrature scheme for the accurate and efficient
evaluation of these nearly singular integrals is presented.

4. Curvilinear triangular boundary element

To study boundary elements which are two-dimensional struc-
tures placed in the 3D space, first we need to define the way in
which we can pass from the xyz global Cartesian system to the
£1,&5,&3 system defined over the element, where &;,&, are oblique
coordinates and ¢&; is in the direction of the normal. The transforma-
tion for a given function @ is related through the following:
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where the square matrix is the Jacoby matrix.

Transformation of this type allows us to describe differentials
of surface in the Cartesian system in terms of the curvilinear
coordinates. A differential of area will be given by
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