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a b s t r a c t

The numerical solution of the convection–diffusion equation represents a very important issue in many

numerical methods that need some artificial methods to obtain stable and accurate solutions. In this

article, a meshless method based on the local Petrov–Galerkin method is applied to solve this equation.

The essential boundary condition is enforced by the transformation method, and the MLS method is

used for the interpolation schemes. The streamline upwind Petrov–Galerkin (SUPG) scheme is

developed to employ on the present meshless method to overcome the influence of false diffusion.

In order to validate the stability and accuracy of the present method, the model is used to solve two

different cases and the results of the present method are compared with the results of the upwind

scheme of the MLPG method and the high order upwind scheme (QUICK) of the finite volume method.

The computational results show that fairly accurate solutions can be obtained for high Peclet number

and the SUPG scheme can very well eliminate the influence of false diffusion.

Crown Copyright & 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

In spite of the great success of the finite volume method and
finite element method as effective numerical tools for solving
fluid flow and heat transfer problems, there are also some short-
comings. These methods depend strongly on mesh properties;
developing good quality mesh is a time-consuming and burden-
some task, particularly in 3D; they also suffer some difficulties in
solving problems of shear band formation, large deformation, etc.;
these difficulties can be overcome by the so-called meshless
method, which has received much attention and achieved
remarkable applications over the past decade.

In the early stage of the development of meshless methods,
they were usually used in computational mechanics. A number of
meshless methods have been applied by different authors to
compute heat transfer and fluid dynamics. Cleary and Monaghan
[1] applied the smooth particle hydrodynamics (SPH) method to
solve unsteady-state heat conduction problems. At present, the
SPH method has been employed widely on the incompressible
flow problems [2–4] and free surface flow problems [5–7]. Singh
et al. [8–10] applied the element free Galerkin (EFG) method to
solve 2-D and 3-D heat conduction problems. Fries and Matthies
[11,12] developed the coupled method of EFG and FEM to

compute incompressible flow problems. Oñate et al. [13]
employed the finite point method (FPM) to compute convection–
diffusion problems. Gunther et al. [14] used the reproducing
kernel particle method (RKPM) to solve viscous, compressible flow
problems. Lin and Atluri [15,16] proposed two kinds of upwind
schemes for the meshless local Petrov–Galerkin (MLPG) method to
solve convection–diffusion problems and incompressible flow pro-
blems. Liu and his collaborators [17] developed a meshfree weak–
strong (MWS) method and used it to solve 2-D laminar natural
convection problems. Shu et al. [18] proposed the RBF-DQ method
to compute incompressible flow. Liu et al. [19] developed a
weighted least-squares (MWLS) method to solve steady and
unsteady-state heat conduction problems. Liu and Tan [20] solved
coupled radiative and conductive heat transfer problems using
the MLPG collocation method. Wu et al. [21] and Wu and Tao [22]
applied the MLPG method to solve heat conduction problems for
irregular domains encountered in engineering. They compared
their results with those of the finite volume method (FVM) and
their results showed that the computational precision of the
MLPG method was much better than that of FVM. Arefmanesh
et al. [23] applied the MLPG method to compute non-isothermal
fluid flow problems with the vorticity-stream function method
and the unity function applied as a weight function. Mohammadi
[24] constructed a new upwind scheme to compute incompres-
sible flow problems with the vorticity-stream function method; in
his work, the Heaviside step function was used as the test
function and radial basis function (RBF) interpolation was
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employed on the shape function and its derivatives construction.
The results showed that this method had very good accuracy. The
approaches based on the vorticity-stream function method can
satisfy the incompressible mass conservation condition automa-
tically, but can not be directly extended to solve 3-D problems.
Wu et al. [25,26] applied the node-based smoothed point inter-
polation method (NS-PIM) to solve 3-D heat transfer and the
thermal analysis of the process plasma spraying.

From the above brief review on applications of meshless
methods in computational fluid dynamics and heat transfer, we
can see that previous researchers have focused mainly on using
the upwind scheme or the method of adding a stability term to
overcome the influence of the non-linear convection term. The
meshless methods based on the global weak form (GWF), such as
EFG, RKPM and NS-PIM, etc., are not ‘‘truly meshless’’ methods
because they require a background cell for numerical integration
over the global domain in the stiffness matrix system. However,
Atluri and his colleagues proposed the MLPG method, which was
based on the local weak form (LWF). This method is the ‘‘truly
meshless’’ because it does not require a mesh for either inter-
polation or numerical integration. A wide range of problems in
computational mechanics have been investigated by Atluri and
his co-authors [27]. Simultaneity, Lin and Atluri [15,16] also
developed two upwind schemes (US1,US2) to deal with the
convection term for flow problems; their results showed that
the second upwind scheme was better, but when this method was
used to handle incompressible flow problems for high Reynolds
number it suffered from divergence problems. It is necessary to
build some stability and a high precise upwind scheme to deal
with the convection term in the MLPG method.

The purpose of this paper is to introduce a streamline upwind
Petrov–Galerkin method into the MLPG method for flow pro-
blems. The new scheme is applied in convection–diffusion pro-
blems to verify its stability and accuracy. The results of the
present method are also compared with the results of the upwind
scheme proposed by Lin and Atluri and the high order scheme
using FVM.

2. MLPG method for the convection–diffusion equation

The two-dimensional, steady-state convection–diffusion equa-
tion in the entire domain O and boundary conditions can be
written in the following form:
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@xj
¼

1

Pe

@2T

@xj
2
þQ ðj¼ 1,2Þ in O ð1Þ

where the Peclet number is defined as

Pe¼
uref Lref
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the Dirichlet boundary condition

T ¼ T1 on Gu ð3Þ

the Neumann boundary condition

�l
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@xj
nj ¼ q1 on Gt ð4Þ

where T represents the temperature, T1 is the given boundary
temperature, l is the thermal conductivity, Q is the source term, nj

is the outward unit vector to G, q1 is the given boundary heat flux,
uj is the velocity, and Gt and Gu are subsets of G satisfying
Gt\Gu¼| and Gt[Gu¼G.

To satisfy Eq. (1) in a local sub-domain Ox, the weighted
integral form of Eq. (1) is given asZ
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To reduce the order of the required differentiability on T, we
can integrate Eq. (5) by partsZ
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By using the Gauss theoremZ
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we obtain the following local weak formulation equation:Z
Ox
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Gs is the sub-domain boundary, the boundary Gs of the local sub-
domain includes three parts (see Fig. 1), GsI, Gsu and Gst. GsI is the
part of the sub-domain boundary included in the global domain,
Gsu¼Gs[Gu, and Gst¼Gs[Gt.

Substituting Eq. (4) into Eq. (8), results in the following equation:Z
Ox
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To obtain the discretized equation of each sub-domain, the
unknown function can be approximation using the moving least
square (MLS) method

ThðxÞ ¼UT
ðxÞT̂¼

XN

I ¼ 1

UIðxÞT̂I ð10Þ

where T̂ represent the fictitious nodal value, but not the value of
unknown function. The characteristics of MLS have been widely
discussed in the literature [28,29] and will not be restated here.
Substitution of Eq. (10) into the Eq. (9) for all the nodes, yields the
following discretized system of linear equations:
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Fig. 1. Schematics of the sub-domain.
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