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Abstract

We study multivariate integration and approximation for functions belonging to a weighted reproducing kernel Hilbert space
based on half-period cosine functions in the worst-case setting. The weights in the norm of the function space depend on two
sequences of real numbers and decay exponentially. As a consequence the functions are infinitely often differentiable, and therefore
it is natural to expect exponential convergence of the worst-case error. We give conditions on the weight sequences under which we
have exponential convergence for the integration as well as the approximation problem. Furthermore, we investigate the dependence
of the errors on the dimension by considering various notions of tractability. We prove sufficient and necessary conditions to achieve
these tractability notions.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

In this paper we study two instances of multivariate linear problems. We are interested in approximating linear
operators Ss : Hs → Gs , where Hs is a certain Hilbert space of s-variate functions defined on [0, 1]

s and where Gs is
a normed space, namely:

• Numerical integration of functions f ∈ Hs : In this case, we have Gs = R and Ss( f ) = INTs( f ) =

[0,1]s f (x) dx;

• L2-approximation of functions f ∈ Hs : In this case, we have Gs = L2([0, 1]
s) and Ss( f ) = APPs( f ) = f.

Without loss of generality, see, e.g., [14] or [11, Section 4], we approximate Ss by linear algorithms An,s using n
function evaluations of the form

An,s( f ) =

n
j=1

α j f (x j ) for all f ∈ Hs, (1)
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where α j ∈ Gs and x j ∈ [0, 1]
s for all j = 1, 2, . . . , n. That is, we consider only algorithms using the class of

standard information. For multivariate approximation, it also makes sense to consider the information class Λall which
contains not only function evaluations but all linear functionals, see, e.g. [8].

We measure the error of an algorithm An,s in terms of the worst-case error, which is defined as

e(An,s, Ss) := sup
f ∈Hs

∥ f ∥Hs ≤1

Ss( f ) − An,s( f )


Gs
,

where ∥·∥Hs , ∥·∥Gs denote the norms in Hs and Gs , respectively. The nth minimal (worst-case) error is given by

e(n, Ss) := inf
An,s

e(An,s, Ss),

where the infimum is taken over all admissible algorithms An,s . For n = 0, we consider algorithms that do not use
information evaluations and therefore we use A0,s ≡ 0. The error of A0,s is called the initial (worst-case) error and is
given by

e(0, Ss) := sup
f ∈Hs

∥ f ∥Hs ≤1

∥Ss( f )∥Gs
= ∥Ss∥ .

During the past years many examples of weighted reproducing kernel Hilbert spaces of functions with exponen-
tially decaying weights have been studied, for example Korobov spaces of one-periodic functions on the unit cube
whose Fourier coefficients decay exponentially fast (see [1,2,9,10]) or Hermite spaces of functions on Rs whose Her-
mite coefficients decay exponentially fast (see [6,8,7]). The recent paper [8] studies multivariate approximation over
Hilbert spaces with exponential weights by linear algorithms based on arbitrary linear functionals (in other words, the
algorithms are allowed to use the information class Λall) in a very general setting which covers Korobov and Hermite
spaces in the aforementioned sense, but also so-called Walsh spaces and cosine spaces. The advantage of the cosine
space over the Korobov space is that in this setting one gets rid of the periodicity assumption.

In all of these papers it is shown that one is able to obtain errors that converge to zero very quickly as n increases,
namely exponentially fast. By exponential convergence (EXP) of the worst-case error we mean that there exist a
number q ∈ (0, 1) and functions p, C, M : N → (0, ∞) such that

e(n, Ss) ≤ C(s) q (n/M(s)) p(s)
for all s, n ∈ N. (2)

If the function p in (2) can be taken as a constant function, i.e., p(s) = p > 0 for all s ∈ N, we say that we achieve
uniform exponential convergence (UEXP) of e(n, Ss). Furthermore, we denote by p∗(s) and p∗ the largest possible
rates p(s) and p such that EXP and UEXP hold, respectively.

When studying algorithms An,s , we do not only want to control how their errors depend on n, but also how they
depend on the dimension s. This is of particular importance for high-dimensional problems. To this end, we define,
for ε ∈ (0, 1) and s ∈ N, the information complexity by

n(ε, Ss) := min {n : e(n, Ss) ≤ ε e(0, Ss)}

as the minimal number of information evaluations needed to reduce the initial error by a factor of ε. EXP implies
that asymptotically we need O(log1/p(s) ε−1) information evaluations for ε → 0, to compute an ε-approximation.
However, it is not clear how long we have to wait to see this nice asymptotic behavior especially for large s. This
is the subject of tractability. Thus, we intend to study how the information complexity depends on log ε−1 and s by
considering the following tractability notions, which were already considered in [1,2,6,8–10]. We say that we have
Exponential Convergence-Weak Tractability (EC-WT) if

lim
s+ε−1→∞

log n(ε, Ss)

s + log ε−1 = 0

with the convention log 0 = 0, i.e., we rule out the cases for which n(ε, s) depends exponentially on s and log ε−1. If
there exist numbers c, τ, σ > 0 such that

n(ε, Ss) ≤ c s σ (1 + log ε−1) τ for all s ∈ N, ε ∈ (0, 1), (3)



Download English Version:

https://daneshyari.com/en/article/5127981

Download Persian Version:

https://daneshyari.com/article/5127981

Daneshyari.com

https://daneshyari.com/en/article/5127981
https://daneshyari.com/article/5127981
https://daneshyari.com

