

Available online at www.sciencedirect.com

Mathematics and Computers in Simulation 143 (2018) 186-190

www.elsevier.com/locate/matcom

Original articles

A lower bound for the dispersion on the torus

Mario Ullrich

Johannes Kepler University, Altenberger Str. 69, 4040 Linz, Austria

Received 19 October 2015; received in revised form 16 December 2015; accepted 18 December 2015 Available online 30 December 2015

Abstract

We consider the volume of the largest axis-parallel box in the *d*-dimensional torus that contains no point of a given point set \mathcal{P}_n with *n* elements. We prove that, for all natural numbers *d*, *n* and every point set \mathcal{P}_n , this volume is bounded from below by min{1, d/n}. This implies the same lower bound for the discrepancy on the torus.

© 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.

Keywords: Dispersion; Discrepancy; Torus

1. Introduction

The study of uniform distribution properties of *n*-element point sets \mathcal{P}_n in the *d*-dimensional unit cube has attracted a lot of attention in past decades, in particular because of its strong connection to worst case errors of numerical integration using cubature rules, see e.g. [5,13,16]. There is a vast body of articles and books considering the problem of bounding the discrepancy of point sets. That is, given a probability space (X, μ) and a set \mathcal{B} of measurable subsets of X, which we call *ranges*, we want to find the maximal difference between the measure of a set $B \in \mathcal{B}$ and the empirical measure induced by the finite set \mathcal{P}_n , i.e.

$$D(\mathcal{P}_n, \mathcal{B}) \coloneqq \sup_{B \in \mathcal{B}} \left| \frac{\#(\mathcal{P}_n \cap B)}{n} - \mu(B) \right|,$$

where $\mathcal{P}_n \subset X$, $n \in \mathbb{N}$, with $\#\mathcal{P}_n = n$. In what follows we only consider $X = [0, 1]^d$, $d \ge 1$, and the Lebesgue measure μ ; we write $|B| := \mu(B)$. The number $D(\mathcal{P}_n, \mathcal{B})$ is called the *discrepancy* of the point set \mathcal{P}_n with respect to the ranges \mathcal{B} . See e.g. the monographs/surveys [4–6,13,14,16] for the state of the art, open problems and further literature on this topic.

Here, we are interested in lower bounds for this quantity that hold for every point set \mathcal{P}_n . In fact, we are going to bound the apparently smaller quantity

$$\operatorname{disp}(\mathcal{P}_n, \mathcal{B}) := \sup_{\substack{B \in \mathcal{B}:\\ \mathcal{P}_n \cap B = \varnothing}} |B|,$$

http://dx.doi.org/10.1016/j.matcom.2015.12.005

E-mail address: mario.ullrich@jku.at.

^{0378-4754/© 2016} International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.

which we call the *dispersion* of the point set \mathcal{P}_n with respect to the ranges \mathcal{B} . Clearly, this is a lower bound for the discrepancy.

The notion of the dispersion was introduced by Hlawka [9] as the radius of the largest empty ball (for a given metric). In this setting there are some applications including the approximation of extreme values (Niederreiter [12]) or stochastic optimization (Yakowitz et al. [19]). The present definition was introduced by Rote and Tichy [17] together with a treatment of its value for some specific point sets and ranges. Only recently an application to the approximation of high-dimensional rank one tensors was discussed in Bachmayr et al. [3] and Novak and Rudolf [15], where the ranges are all axis-parallel boxes in $[0, 1]^d$. A polynomial-time algorithm for finding the largest empty axis-parallel box in dimension 2 was considered by Naamad, Lee and Hsu [11].

Our main interest is the complexity of the problem of finding point sets with small dispersion/discrepancy; especially the dependence on the dimension. That is, given some $\varepsilon > 0$ and $d \in \mathbb{N}$, we want to know how many points are necessary to achieve disp $(\mathcal{P}_n, \mathcal{B}) \leq \varepsilon$ or $D(\mathcal{P}_n, \mathcal{B}) \leq \varepsilon$ for some $\mathcal{P}_n \subset [0, 1]^d$ and $\mathcal{B} \subset 2^{[0, 1]^d}$. For this we define the inverse functions

$$N_0(\varepsilon, \mathcal{B}) := \min \{n: \operatorname{disp}(\mathcal{P}, \mathcal{B}) \le \varepsilon \text{ for some } \mathcal{P} \text{ with } \#\mathcal{P} = n\}$$

and

 $N(\varepsilon, \mathcal{B}) := \min \{ n: D(\mathcal{P}, \mathcal{B}) \le \varepsilon \text{ for some } \mathcal{P} \text{ with } \# \mathcal{P} = n \}.$

We have $N_0(\varepsilon, \mathcal{B}) \leq N(\varepsilon, \mathcal{B})$ for every ε, \mathcal{B} .

For example, if $\mathcal{B} = \mathcal{B}_{ex}^d$ is the set of all axis-parallel boxes contained in $[0, 1]^d$, then it is easily seen that for every point set there exists an empty box with volume larger than 1/(n+1); simply split the cube in n+1 equal parts, one of which must be empty. Moreover, it is known that with respect to the dependence on n this estimate is asymptotically optimal, i.e. there exists a sequence of point sets $(\mathcal{P}_n)_{n\in\mathbb{N}}$ such that $\operatorname{disp}(\mathcal{P}_n, \mathcal{B}_{ex}^d) \leq C_d/n$ for some $C_d < \infty$, see e.g. [17].¹

However, if one considers increasing values of the dimension the situation is less clear: The best bounds to date are

$$\frac{\log_2 d}{4(n+\log_2 d)} \le \inf_{\mathcal{P}:\#\mathcal{P}=n} \operatorname{disp}(\mathcal{P}, \mathcal{B}_{\mathrm{ex}}^d) \le \frac{C^d}{n}$$

for some constant $C < \infty$, see Aistleitner et al. [2] for the lower bound and Larcher [10] for the upper bound. For a proof of a super-exponential upper bound see also Rote and Tichy [17, Prop. 3.1]. This can be rewritten as

$$(1/4 - \varepsilon) \frac{\log_2 d}{\varepsilon} \le N_0(\varepsilon, \mathcal{B}_{ex}^d) \le \frac{C^d}{\varepsilon}.$$

Clearly, there is a huge difference in the behavior in d for the upper and the lower bound.

If we consider the discrepancy instead, then even the order in ε^{-1} differs in the upper and the lower bounds, i.e. for small enough $\varepsilon \leq \varepsilon_0$ and all $d \in \mathbb{N}$ we have

$$c d \varepsilon^{-1} \leq N(\varepsilon, \mathcal{B}_{ex}^d) \leq C d \varepsilon^{-2}$$

with some constants $0 < c, C < \infty$.² The lower bound is due to Hinrichs [8] and the upper bound was proven by Heinrich et al. [7]. To narrow the gap in the ε -behavior while keeping a polynomial behavior in *d* is a long-standing open problem, see also Novak and Woźniakowski [16] for more results/problems in this area.

Nevertheless, for fixed, small $\varepsilon > 0$ the *d*-dependence of $N(\varepsilon, \mathcal{B}_{ex}^d)$ is known to be linear. This motivates us to study the same problem for the dispersion. Unfortunately, we were not able to solve this problem for the ranges \mathcal{B}_{ex}^d . Instead, we consider the "periodic" version of this problem.

More precisely, we regard the unit cube as the torus and consider the *periodic ranges* \mathcal{B}_{per}^d that are defined by

$$\mathcal{B}_{\text{per}}^d \coloneqq \left\{ B_1(x, y) \colon x, y \in [0, 1]^d \right\},\tag{1}$$

¹ Note that for the discrepancy such an inequality cannot hold for any sequence of point sets, see Roth [18].

² If one considers only boxes that are anchored at the origin, i.e. the star-discrepancy, then one can choose $c = \varepsilon_0 = 1/(32e^2) \approx 0.00423$ [8] and C = 100 [1].

Download English Version:

https://daneshyari.com/en/article/5127995

Download Persian Version:

https://daneshyari.com/article/5127995

Daneshyari.com