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Abstract

We consider the volume of the largest axis-parallel box in the d-dimensional torus that contains no point of a given point set
Pn with n elements. We prove that, for all natural numbers d, n and every point set Pn , this volume is bounded from below by
min{1, d/n}. This implies the same lower bound for the discrepancy on the torus.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

The study of uniform distribution properties of n-element point sets Pn in the d-dimensional unit cube has attracted
a lot of attention in past decades, in particular because of its strong connection to worst case errors of numerical
integration using cubature rules, see e.g. [5,13,16]. There is a vast body of articles and books considering the problem
of bounding the discrepancy of point sets. That is, given a probability space (X, µ) and a set B of measurable subsets
of X , which we call ranges, we want to find the maximal difference between the measure of a set B ∈ B and the
empirical measure induced by the finite set Pn , i.e.

D(Pn, B) := sup
B∈B

#(Pn ∩ B)

n
− µ(B)

 ,
where Pn ⊂ X, n ∈ N, with #Pn = n. In what follows we only consider X = [0, 1]

d , d ≥ 1, and the Lebesgue
measure µ; we write |B| := µ(B). The number D(Pn, B) is called the discrepancy of the point set Pn with respect
to the ranges B. See e.g. the monographs/surveys [4–6,13,14,16] for the state of the art, open problems and further
literature on this topic.

Here, we are interested in lower bounds for this quantity that hold for every point set Pn . In fact, we are going to
bound the apparently smaller quantity

disp(Pn, B) := sup
B∈B:

Pn∩B=∅

|B|,
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which we call the dispersion of the point set Pn with respect to the ranges B. Clearly, this is a lower bound for the
discrepancy.

The notion of the dispersion was introduced by Hlawka [9] as the radius of the largest empty ball (for a given
metric). In this setting there are some applications including the approximation of extreme values (Niederreiter [12])
or stochastic optimization (Yakowitz et al. [19]). The present definition was introduced by Rote and Tichy [17] together
with a treatment of its value for some specific point sets and ranges. Only recently an application to the approximation
of high-dimensional rank one tensors was discussed in Bachmayr et al. [3] and Novak and Rudolf [15], where the
ranges are all axis-parallel boxes in [0, 1]

d . A polynomial-time algorithm for finding the largest empty axis-parallel
box in dimension 2 was considered by Naamad, Lee and Hsu [11].

Our main interest is the complexity of the problem of finding point sets with small dispersion/discrepancy;
especially the dependence on the dimension. That is, given some ε > 0 and d ∈ N, we want to know how many
points are necessary to achieve disp(Pn, B) ≤ ε or D(Pn, B) ≤ ε for some Pn ⊂ [0, 1]

d and B ⊂ 2[0,1]
d
. For this we

define the inverse functions

N0(ε, B) := min {n: disp(P, B) ≤ ε for some P with #P = n}

and

N (ε, B) := min {n: D(P, B) ≤ ε for some P with #P = n} .

We have N0(ε, B) ≤ N (ε, B) for every ε, B.
For example, if B = Bd

ex is the set of all axis-parallel boxes contained in [0, 1]
d , then it is easily seen that for every

point set there exists an empty box with volume larger than 1/(n +1); simply split the cube in n +1 equal parts, one of
which must be empty. Moreover, it is known that with respect to the dependence on n this estimate is asymptotically
optimal, i.e. there exists a sequence of point sets (Pn)n∈N such that disp(Pn, Bd

ex) ≤ Cd/n for some Cd < ∞, see
e.g. [17].1

However, if one considers increasing values of the dimension the situation is less clear: The best bounds to date are

log2 d

4(n + log2 d)
≤ inf

P :#P =n
disp(P, Bd

ex) ≤
Cd

n

for some constant C < ∞, see Aistleitner et al. [2] for the lower bound and Larcher [10] for the upper bound. For a
proof of a super-exponential upper bound see also Rote and Tichy [17, Prop. 3.1]. This can be rewritten as

(1/4 − ε)
log2 d

ε
≤ N0(ε, Bd

ex) ≤
Cd

ε
.

Clearly, there is a huge difference in the behavior in d for the upper and the lower bound.
If we consider the discrepancy instead, then even the order in ε−1 differs in the upper and the lower bounds, i.e. for

small enough ε ≤ ε0 and all d ∈ N we have

c d ε−1
≤ N (ε, Bd

ex) ≤ C d ε−2

with some constants 0 < c, C < ∞.2 The lower bound is due to Hinrichs [8] and the upper bound was proven by
Heinrich et al. [7]. To narrow the gap in the ε-behavior while keeping a polynomial behavior in d is a long-standing
open problem, see also Novak and Woźniakowski [16] for more results/problems in this area.

Nevertheless, for fixed, small ε > 0 the d-dependence of N (ε, Bd
ex) is known to be linear. This motivates us to

study the same problem for the dispersion. Unfortunately, we were not able to solve this problem for the ranges Bd
ex.

Instead, we consider the “periodic” version of this problem.
More precisely, we regard the unit cube as the torus and consider the periodic ranges Bd

per that are defined by

Bd
per :=


B1(x, y): x, y ∈ [0, 1]

d


, (1)

1 Note that for the discrepancy such an inequality cannot hold for any sequence of point sets, see Roth [18].
2 If one considers only boxes that are anchored at the origin, i.e. the star-discrepancy, then one can choose c = ε0 = 1/(32e2) ≈ 0.00423 [8]

and C = 100 [1].
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