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a b s t r a c t

This paper deals with numerical modeling of three-dimensional linear wave propagation based on the
mesh-free kp-Ritz method. The mesh-free kernel particle estimate is employed to approximate the 3D
displacement field. A system of discrete equations is obtained through application of the Ritz
minimization procedure to the energy expressions. Convergence analysis and error estimates of the
kp-Ritz method for three-dimensional wave equation are also presented in the paper. From the error
analysis, we found that the error bound between the numerical and the exact solution is directly related
to the radii of weight functions and the time step length. Effectiveness of the kp-Ritz method for three-
dimensional wave equation is investigated by three numerical examples.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The finite element method (FEM) and boundary element
method (BEM) are well established numerical techniques which
have been applied to obtain numerical solutions for various
problems in the field of engineering and science. Even though
these methods are very effective for solving various kinds of
partial differential equations, they have their own limitations also
[1–3]. For FEM, the need to produce a body-fitted mesh in two-
and three-dimensional problems makes this method time-
consuming and difficult to use. The BEM requires a domain node
distribution for an inhomogeneous equation, in addition to a
boundary mesh, and depends on the fundamental solutions.
Meshless techniques have attracted the attention of researchers
since they help to avoid these problems. In a meshless (mesh-free)
method, a set of scattered nodes are used, instead of meshing of
the domain of the problem. For many engineering problems, such
as large deformation and crack growth, use of the re-meshing
technique is necessary to deal with extremely large deformations
or fractures of the mesh. The meshless method is a new and
interesting numerical technique that can solve many engineering
problems which are not amenable to be solved with conventional
numerical methods, with minimum or no meshing at all [4].

Some meshless methods have been developed, such as smooth
particle hydrodynamics methods (SPH) [5], radial basis function
(RBF) [6], element free Galerkin method (EFG) [7], reproducing

kernel particle method (RKPM) [8–10], meshless local Petrov–
Galerkin method (MLPG)[11] and the finite point method(FPM)
[12] and so on.

The wave equations model vibrations of structures (e.g., build-
ings, beams and machines) and are the basis for fundamental
equations of atomic physics. The wave equation usually describes
water waves, vibrations of a string, propagation of sound waves
and transmission of electric signals in a cable, etc. The typical
model that describes the wave equation is an initial boundary
value problem valid in a bounded domain or an initial value
problem valid in an unbounded domain. It is interesting to note
that two initial conditions need to be prescribed, namely the initial
displacement uðx; y; z;0Þ ¼ φ1ðx; y; zÞ and the initial velocity
utðx; y; z;0Þ ¼ φ2ðx; y; zÞ, both at starting time t ¼ 0. Unlike the heat
equation, the wave equation contains the term utt which repre-
sents the vertical acceleration at point ðx; y; zÞ. The wave equation
plays a significant role in various physical problems and is required
in diverse areas of science and engineering [13–16]. The wave
equations arise in many kinds of engineering problems and have
attracted much research attention recently. Second- and fourth-
order accuracy operator splitting methods for the three-
dimensional linear hyperbolic equations have been discussed
[17–19]. These schemes are conditionally stable. Mohanty et al.
[20–22] proposed unconditionally stable difference schemes for
the linear second-order hyperbolic equation with first-order time
derivative terms in one, two and three space dimensions. Mehdi
Dehghan [23–27] has done much work on wave equations based
on finite difference method and RBF.

The Ritz [28] approximation approach, developed almost a
century ago, is a generalization of the Rayleigh [29] method. It is
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based on the principle that a resonant vibrating system completely
interchanges its kinetic and potential energy forms. In the Rayleigh
method, a single trial function for the mode shape satisfying at
least the geometric boundary conditions is employed, and then by
equating the maximum kinetic and potential energies, an upper
bound frequency solution is obtained. The Ritz or Rayleigh–Ritz
method is a proven approximation technique in computational
mechanics; notable works include Kitipornchai et al. [30], Liew
et al. [31,32], Cheung and Zhou [33,34], Zeng and Bert [35], Su and
Xiang [36], Lim and Liew [37] and Liew and Feng [38].

This paper employs the reproducing kernel particle estimation
to study the three-dimensional wave equation. In this study, the
displacement field is approximated as these kernel functions, an
energy formulation is formulated and a system of discrete equa-
tions is obtained by the Ritz minimization procedure. In the
conventional Ritz method, it is difficult to choose appropriate
functions to satisfy some complicated boundary conditions; eigen-
value equations need to be reevaluated for different boundary
conditions. In the present kp-Ritz method, a standard weight
function is employed to express the interior field and boundary
conditions are enforced by the penalty method, thereby avoiding
disadvantages of the conventional Ritz method. Error estimates
and convergence analysis of this method for three-dimensional
wave equation are also discussed. A few selected example pro-
blems are used to study the applicability of the method and the
numerical results are compared with the existing exact solutions.

2. kp-Ritz method for the three-dimensional wave equation

2.1. Energy formulation

Consider the following three-dimensional linear wave equation
of the form:

∂2u
∂t2

þ 2a
∂u
∂t

þ b2u¼ ∂2u
∂x2

þ ∂2u
∂y2

þ ∂2u
∂z2

þ f ðx; y; z; tÞ;

0≤x≤a1; 0≤y≤b1; 0≤z≤c1; t40 ð1aÞ
with initial conditions

uðx; y; z;0Þ ¼ φ1ðx; y; zÞ ð1bÞ

∂uðx; y; z;0Þ
∂t

¼ φ2ðx; y; zÞ ð1cÞ

and boundary conditions

uð0; y; z; tÞ ¼ f 0ðy; z; tÞ; uða1; y; z; tÞ ¼ f 1ðy; z; tÞ ð1dÞ

uðx;0; z; tÞ ¼ g0ðx; z; tÞ; uðx; b1; z; tÞ ¼ g1ðx; z; tÞ ð1eÞ

uðx; y;0; tÞ ¼ h0ðx; y; tÞ; uðx; y; c1; tÞ ¼ h1ðx; y; tÞ ð1fÞ
The above PDE is an important hyperbolic equation that

represents three-space dimensional damped wave equation with
a source term, also called the telegraph equation. Eq. (1) models
the mixture of diffusion and wave propagation by introducing a
term that accounts for effects of finite velocity to standard heat or
mass transport equation. It is commonly used in signal analysis for
transmission and propagation of electrical signals and also has
applications in other fields. Numerical solution of the damped
wave equation is of great importance in wave phenomena.

The weighted integral form of Eq. (1a) is obtained as follows:Z
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The weak form of Eq. (2) isZ
V
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The energy functional ΠðuÞ can be written as

ΠðuÞ ¼ 1
2

Z
Ω
∇Tu⋅∇u dΩþ

Z
V

u
∂2u
∂t2

þ 2au
∂u
∂t

þ b2u2−uf
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dV ð4Þ

2.2. Three-dimensional kernel particle shape functions

Approximation of the displacement field can be expressed as

uðx; tÞ ¼ ∑
n

I ¼ 1
ΦIðxÞ⋅UIðtÞ ¼ΦðxÞ⋅U ð5Þ

where n is the total number of particles, ΦIðxÞ are the shape
functions and UIðtÞ are unknown nodal values of u at a sampling
point I. Based on the reproducing kernel particle estimate, the
shape function is given by

ΦIðxÞ ¼ Cðx; x−xIÞwrðx−xI Þ ð6Þ
where Cðx; x−xIÞ is the correcting function and wrðx−xI Þ is the
kernel function. The kernel function is expressed as

wrðx−xIÞ ¼
1
r
ϕ

x−xI
r

� �
ð7Þ

and the correction function is written as

cðx; x−x′Þ ¼ ∑
m

i ¼ 1
piðx−x′Þ⋅biðxÞ ¼ pT ðx−x′ÞbðxÞ; ðx∈ΩÞ ð8Þ

where

P ¼

p1ðx−x1Þ p1ðx−x2Þ … p1ðx−xnÞ
p2ðx−x1Þ p2ðx−x2Þ … p2ðx−xnÞ

⋮ ⋮ ⋱ ⋮
pmðx−x1Þ pmðx−x2Þ … pmðx−xnÞ

2
66664

3
77775 ð9Þ

bT ðxÞ ¼ ðb1ðxÞ; b2ðxÞ;…; bmðxÞÞ ð10Þ
where m is the number of terms in the basis, piðx−x′Þ are
monomial basis functions and biðxÞ are coefficients of monomial
basis functions to be determined. Generally, the basis can be

Linear basis ðp¼ 1Þ:
pT ¼ ð1; x1−x10 ; x2−x20 Þ; ð2DÞ ð11Þ

pT ¼ ð1; x1−x10 ; x2−x20 ; x3−x30 Þ; ð3DÞ ð12Þ
Quadratic basis ðp¼ 2Þ:
pT ¼ ð1; x1−x′1;x2−x′2;ðx1−x′1Þ2;ðx1−x′1Þðx2−x′2Þ;ðx2−x′2Þ2Þ; ð2DÞ

ð13Þ

pT ¼ ð1; x1−x10 ; x2−x20 ; x3−x30 ; ðx1−x10 Þ2; ðx2−x20 Þ2; ðx3−x30 Þ2;
ðx1−x10 Þðx2−x20 Þ; ðx1−x10 Þðx3−x30 Þ; ðx2−x20 Þðx3−x30 ÞÞ; ð3DÞ ð14Þ
Thus the shape function can be written as

ΦIðxÞ ¼ bT ðxÞPðx−xI Þwrðx−xIÞ ð15Þ
Eq. (15) can be rewritten as

ΦIðxÞ ¼ bT ðxÞBIðx−xIÞ ð16Þ
where

BIðx−xI Þ ¼ Pðx−xIÞϕaðx−xIÞ ð17Þ

bðxÞ ¼M−1ðxÞ⋅H ð18Þ

H¼ ð1;0;…;0ÞT ð19Þ
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