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Abstract

In the present work, a method for solving partial differential equations with uncertainties is presented. A multiresolution
method, permitting to compute statistics for the entire solution and in presence of a whatever form of the probability density
function, is extended to perform an adaptation in both physical and stochastic spaces. The efficiency of this strategy, in terms
of refinement/coarsening capabilities, is demonstrated on several test-cases by comparing with respect to other more classical
techniques, namely Monte Carlo (MC) and Polynomial Chaos (PC). Finally, the proposed strategy is applied to the heat equation
showing very promising results in terms of accuracy, convergence and regularity.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.

Keywords: Multiresolution; Differential equations; Uncertainty quantification; Finite element; Heat equation

1. Introduction

In the last fifty years a strong effort has been devoted to develop efficient numerical methods for solving
partial differential equations. However, estimating the quality of the prediction of a numerical simulation remains
still challenging. One issue is related to the uncertainties affecting the physical model and/or the initial/boundary
conditions. A general consensus exists about the need to take into account experimental and modeling uncertainty
in the numerical simulations. Uncertainty Quantification (UQ) is a branch of the numerical analysis focused on the
uncertainty assessment and the estimation of a confidence interval for the quantity of interest.

A classical UQ method is the Monte Carlo (MC) method [36]. This method is the most common in the UQ
community due to its flexibility. The rate of convergence results to be very slow O(1/

√
N ) [15], but the advantage is its

independence from the number of stochastic dimensions. Over the last years, many variants of the method have been
proposed to accelerate its convergence [41,15,26], though they cannot tackle its prohibitive cost. Following the seminal
work of Giles in [25] about stochastic ordinary differential equations, recently a great interest has been devoted to the
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so-called Multi Level Monte Carlo (MLMC) techniques for stochastic pdes. For instance in [16], the MLMC technique
is introduced for elliptic pdes with random coefficients. The idea of the MLMC is quite simple and consists in sampling
the quantity of interest over different spatial mesh with the aim to reduce the computational cost with respect to the
classic MC for a prescribed overall (spatial–stochastic) accuracy. Another class of methods is the so-called Stochastic
Collocation (SC) approach. Two different approaches are commonly employed in literature [46]: the first is based on
the Lagrange interpolation technique, while the second one relies on pseudo-spectral expansion (this second technique
in this context is equivalent to the non-intrusive Polynomial Chaos described in the following). In both cases, the first
step is to recover the coefficients of the expansion, i.e. of the Lagrange polynomial basis or the spectral basis. Once the
continuous representation of the function is obtained, the statistics can be obtained directly by using some quadrature
techniques. The method is conceptually straightforward, however the selection of nodes is a nontrivial problem in
multiple dimensional spaces [46]. Therefore, it has been proposed, e.g. in [10,47], to use as collocation points the
zeros of suitable tensor product orthogonal polynomials. Note that these methods are often coupled to sparse grid
techniques for high-dimensional problems, in order to reduce the computational cost. The sparse grid strategy has been
proposed by Smolyak [40]. It consists in the interpolation of a function in a reduced subset of points with respect to
the full tensorization set. This strategy is a cure against the so-called curse of dimensionality [11], i.e. the exponential
growth of the number of points with respect to the stochastic dimensions. Relevant works in this context are related
to the application of the sparse grid technique for cubature in high-dimensional spaces [23,24], and application to UQ
problems [19,35,31]. Note that all these techniques are non-intrusive, since the statistics of the quantity of interest
are obtained by post-processing multiple independent runs of the deterministic code. However, a possible output for
partial differential equations could be the entire space–time space. In this case, these techniques can be still used but
each spatial or time location is considered independent without the possibility to re-employ the information already
acquired.

The Polynomial Chaos (PC) technique has also acquired great popularity in last years. In the original work of
Wiener [44], the solution is expanded in a polynomial Hermite basis, the so-called homogeneous chaos expansion.
In recent years, Xiu and Karniadakis [48] demonstrated that the optimal convergence can be achieved if orthogonal
basis is chosen following the so-called Wiener–Askey scheme. This approach leads to the well-known generalized
Polynomial Chaos (gPC) approach. Long-time integration problems could be encountered [43] due to the modification
in time of the statistic properties of the solution, which can yield an efficiency loss of the polynomial basis in time.
For curing this issue, Gerritsma [22] proposed a time-dependent generalized Polynomial Chaos scheme. Handling
custom-defined probability density function (for example discontinuous and unsteady) is also a limitation of this
technique (see for instance [45,37]). Other approaches based on Galerkin projection scheme are the ones which
employ a sparsification of the tensor product between the stochastic and spatial space. For instance, in [13] a
sparse deterministic–stochastic tensor Galerkin finite element method has been proposed, while in [12] its collocation
counterparts have been formulated. Both the previously mentioned approaches are based on an a priori selection of
the deterministic and stochastic discretization spaces for elliptic pde. As a consequence, even if these ones constitute
some attempts for balancing the deterministic and stochastic discretization errors, they are limited to steady and
smooth problems.

The major drawbacks encountered in real-like applications for PC, and in general approaches based on the Galerkin
projection, are the presence of discontinuities, in both physical and stochastic spaces. Wan and Karniadakis introduced
an adaptive class of methods for solving discontinuities by using local basis functions, namely the multi-element
generalized Polynomial Chaos (ME-gPC) [18]. This strategy deals with an adaptive decomposition of the domain
on which local basis is employed. In order to treat discontinuous response surfaces, Le Maı̂tre et al. applied a
multiresolution analysis to Galerkin projection schemes [33,32,42]. This class of schemes relies on the projection
of the uncertain data on a multi-wavelets basis consisting of piecewise polynomial (smooth) functions. This approach
is shown to be very CPU demanding. As a consequence, two cures are then explored in the context of adaptive
methods: automatically refine the multi-wavelets basis or adaptively partitioning the domain.

In the context of sparse grid techniques, the issue of discontinuities has also been treated. For curing this issue,
in [30] efficient algorithms to track the discontinuities in multidimensional spaces have been proposed. The idea
is to apply standard sparse grid based techniques on each sub-domain. The algorithm is based on the polynomial
annihilation techniques [39] and becomes optimal for discontinuities residing on a manifold of smaller dimensionality.
Even in this case, the method is proposed for the functional approximation problem, while its application to the
statistical characterization of random fields is not developed.
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