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a b s t r a c t

Hamiltonian PDEs have some invariant quantities such as energy and momentum, etc., which should be
well conserved with the numerical integration. In this paper we concentrate on the nonlinear wave
equation. We study how a space discretization by using multiquadric quasi-interpolation method makes
the space discretized system also possess some invariants which are good approximation of the
continuous energy. Then, appropriate symplectic scheme is employed for the integration of the semi-
discretized system. Theoretical results show that the proposed method has not only high order accuracy
but also good properties of long-time tracking capability. Some numerical examples are presented to
demonstrate the effectiveness of the proposed method.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Hamiltonian wave equations can be treated as Hamiltonian
systems (in infinite dimensions) [20]. Hamiltonian formalism has
the important property of being area-preserving (symplectic). To
solve these Hamiltonian PDEs numerically, one hopes that the
numerical solution will hold this property too. A standard method
to obtain symplectic scheme for an infinite-dimensional Hamilto-
nian PDEs is that, first discretize the Hamiltonian PDEs in space to
obtain a finite-dimensional Hamiltonian system, and then evolve
the semi-discrete system by symplectic integrators [2]. In this
numerical procedure, the key for success is to ensure that the
obtained semi-discrete system is a finite-dimensional Hamiltonian
ODEs system, for which finite difference method (FDM) [6,11],
finite element method (FEM) [27], Fourier pseudospectral method
[13] can be utilized. However, most of those methods depend on a
suitable generation of meshes, which is difficult for problems with
very complicated and irregular geometries. To develop a meshless
symplectic integrator or meshless energy-conserving numerical
scheme on scattered nodes motivates the current work.

It is well known that the multiquadric is one of the most often
applied kernels in meshless methods. Multiquadric kernels were
proposed by Hardy [9]. Franke designed lots of numerical experi-
ments, among which multiquadrics performed best [8]. Therefore
multiquadric quasi-interpolation method has caught the

attentions of many researchers. For the meshless collocation (or
interpolation) method for PDEs by using multiquadric functions,
one is required to solve a large scaled linear system of equations;
moreover, the coefficients matrix is usually very ill-conditioned
and the results are sensitive to the shape parameter c [16]. The
most important advantage of quasi-interpolation is that one can
evaluate the approximant directly without needs to solve any
linear system of equations. Beatson and Powell first proposed
some quasi-interpolation scheme by using multiquadric [1]. Beat-
son even used the multiquadric quasi-interpolation as a computer
aided design tool in the film “The Lord of the Rings III”. Ref. [23]
improved these schemes and discussed their approximation order
and the shape preserving property. Lately [12] proved that multi-
quadric quasi-interpolation can approximate not only the function
itself but also its high order derivatives. Ref. [24] used the multi-
quadric quasi-interpolation to solve free boundary diffusion pro-
blem. The multiquadric kernel method is one of the radial basis
functions (RBFs) methods. RBFs method for solving PDEs has
become one part of the new numerical meshless methods. More
details about RBFs meshfree approximation methods for PDEs can
be found in [5].

To be more precise, define the multiquadric function
ϕðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ c2

p
and ϕjðxÞ ¼ ϕðx−xjÞ, where c is a shape parameter.

Multiquadric quasi-interpolation of a function f : R↦R on the
scattered knots

⋯ox−1ox0ox1o⋯oxNo⋯; h≔max
j

ðxj−xj−1Þ;

takes the form

ðLf Þ ¼∑f ðxjÞψ jðxÞ; ð1:1Þ

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/enganabound

Engineering Analysis with Boundary Elements

0955-7997/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.enganabound.2013.04.011

☆Research partially supported by Grant 12DZ2272800.
n Corresponding author. Tel.: +86 13681731799.
E-mail addresses: zmwu@fudan.edu.cn (Z. Wu),

10110180035@fudan.edu.cn (S. Zhang).

Engineering Analysis with Boundary Elements 37 (2013) 1052–1058

www.elsevier.com/locate/enganabound
www.elsevier.com/locate/enganabound
http://dx.doi.org/10.1016/j.enganabound.2013.04.011
http://dx.doi.org/10.1016/j.enganabound.2013.04.011
http://dx.doi.org/10.1016/j.enganabound.2013.04.011
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.enganabound.2013.04.011&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.enganabound.2013.04.011&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.enganabound.2013.04.011&domain=pdf
mailto:zmwu@fudan.edu.cn
mailto:10110180035@fudan.edu.cn
http://dx.doi.org/10.1016/j.enganabound.2013.04.011


where ψ jðxÞ are the following linear combinations of the multi-
quadrics, that

ψ jðxÞ ¼ ψ ðx−xjÞ ¼
ϕjþ1ðxÞ−ϕjðxÞ
2ðxjþ1−xjÞ

−
ϕjðxÞ−ϕj−1ðxÞ
2ðxj−xj−1Þ

:

The purpose of this paper is to present a meshless energy-
conserving numerical method by using multiquadric quasi-
interpolation as an approximation scheme for numerical solution
of Hamiltonian wave equation

utt−uxx þ F′ðuÞ ¼ 0; ð1:2Þ
where F : R↦R is a smooth function.

An outline of the paper is as follows. In Section 2, preliminaries
about Hamiltonian wave equation and the properties of multi-
quadric function are recalled. In Section 3 we will discuss how a
space discretization by using multiquadric quasi-interpolation
method makes the space discretized system that also has some
invariants which well approximate the continuous energy. In
Section 4, the conservative multiquadrics quasi-interpolation
method is introduced by using staggered Störmer–Verlet scheme

Vnþ1=2 ¼ Vn−1=2 þ τΦ2MUn−τF′ðUnÞ

Unþ1 ¼Un þ τVnþ1=2:

This scheme conserve a quantity ~HΔ satisfying

HΔ ¼ ~HΔ þOðτ2Þ:
Both the truncation error and globe error are also studied. In
Section 5, numerical examples are tested to verify the effect of the
method. Finally, concluding remarks show that by further study
the proposed method can be applied to construct not only
conservative moving knots but also high-order schemes.

2. Preliminaries

2.1. Nonlinear wave equation

We consider the nonlinear wave equation (1.2). This equation is
used to model nonlinear phenomena such as the propagation of
dislocation in crystal and the behavior of elementary particles. It is
also used in soliton theory. The equation is a classical example of
Hamiltonian PDEs (infinite-dimensional Hamiltonian system) [20].
By defining a new variable v¼ ut , the Hamiltonian formulation
goes as

ut ¼ þ δH
δv

¼ v

vt ¼−
δH
δu

¼ uxx−F′ðuÞ;

8>><
>>: ð2:1Þ

where

Hðu; vÞ ¼ 1
2

Z
½v2 þ u2

x þ 2FðuÞ� dx ð2:2Þ

is invariant with respect to time under an appropriate initial
boundary-value condition. Here δH=δu, δH=δv are the variational,
or Gateaux derivatives defined by

d
dϵ

H½uþ ϵϕ�Þ
ϵ ¼ 0

≡
Z

δH
δu

ϕ dx;
d
dϵ

H½vþ ϵϕ�Þ
ϵ ¼ 0

≡
Z

δH
δv

ϕ dx:
��

The symplectic form of this system

Ω¼
Z

du∧dv dx ð2:3Þ

is also invariant with respect to time. More details can be found in
[13,15].

2.2. Discretization method for the NLW equation

Classical methods to solve (2.1) numerically are those, where a
standard procedure starts with the discretization of the equation
in space and then in time. After the discretization in space, the
following semi-discretized problem arises:

d
dt
Uh ¼ Vh

d
dt
Vh ¼ AhUh−F′ðUhÞ

8>><
>>: ð2:4Þ

where UhðtÞ ¼ ð…;uðjh; tÞ;…ÞT . To preserve the symplectic form of
(2.1), an appropriate numerical discretization scheme needs to be
developed in the sense that the above resulting semi-discrete
system (continuous in time) can be written as a finite-dimensional
Hamiltonian system. For this purpose, the numerical scheme is
required to be able to preserve the symmetric property of second-
order differential operator embedded in (2.1). That means a
suitable Ah must be symmetric [3]. Several methods can be chosen
such as the finite difference method [2], finite element method
[27] and Fourier pseudospectral method [13] on a uniform grid.

As for nonuniform knots, consider the finite divided difference
approximation of uxx at point xi

ðuxxÞi ¼
uiþ1−ui

xiþ1−xi
−
ui−ui−1

xi−xi−1

� �
xiþ1−xi−1

2
;

.

by defining Δxi ¼ ðxiþ1−xi−1Þ=2, αi ¼ 1=ðxi−xi−1Þ, βi ¼ 1=xiþ1−xi, and

M≔

⋱ αi
αi −ðαi þ βiÞ βi

βi ⋱

0
B@

1
CA;

taking ~ui ¼
ffiffiffiffiffiffiffiffi
Δxi

p
ui, we can get

⋮
ð ~uxxÞi
⋮

0
B@

1
CA≈

⋱
1ffiffiffiffiffiffi
Δxi

p
⋱

0
B@

1
CAM

⋱
1ffiffiffiffiffiffi
Δxi

p
⋱

0
B@

1
CA

⋮
~ui

⋮

0
B@

1
CA:

Sometimes the sampling data points (knots) should be moved
according to the equation, e.g. [10,21]; it is hard to solve the
nonlinear partial differential propagations equation with moving
knots by using the traditional methods which depend on a suitable
generation of meshes. Multiquadric quasi-interpolation method is
a true meshless method, it can be used for constructing moving
knots schemes [21] and can be generalized to high-dimensional
space [22]. In this paper, a multiquadric quasi-interpolation
method will be used for the spatial discretization of the wave
equation.

2.3. The Multiquadric function

Multiquadric function satisfies
R
ϕ″ðxÞ=2 dx¼ 1, some impor-

tant properties are given in the following lemmas. Based on the
approach of Cheney [4,12] Lemmas 2.1 and 2.2 were proved.

Lemma 2.1. If f∈C2ðRÞ, then the following inequality��� Z þ1

−1
f ðtÞϕ″ðx−yÞ

2
dt−f ðxÞ

���≤Oðc2Þ ð2:5Þ

holds.
Lemma 2.2. If f ðxÞ∈C2ðRÞ and f, f ′ and f ″ are bounded by a
polynomial of degree2, 1 and 0, respectively, then the following
inequality��� Z ϕ″ðx−tÞ

2
f ðtÞ dt−∑

j
f ðxjÞ

ϕ″ðx−xjÞ
2

Δj

���oOðh=cÞ ð2:6Þ

holds, where Δj ¼ ðxjþ1−xj−1Þ=2.
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