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a b s t r a c t

In this work, interacting acoustic–elastodynamic models are analyzed by means of an optimized iterative
coupling algorithm. In this iterative coupling procedure, each acoustic/elastodynamic sub-domain of the
model is solved independently, and the variables at the common interfaces of the sub-domains are
successively renewed, until convergence is achieved. A relaxation parameter is introduced in order to
ensure and/or speed up the convergence of the iterative analysis, and an expression to compute optimal
values for the relaxation parameter is presented. Several numerical methods are considered to discretize
the acoustic and elastodynamic sub-domains of the coupled model, and the performance of these
different methodologies, in the coupled analysis, is discussed. In this context, the boundary element
method and the method of fundamental solutions are applied to model the acoustic sub-domains,
whereas the finite element method, the collocation method and the meshless local Petrov–Galerkin
method are applied to model the elastodynamic sub-domains. Independent discretizations of the
acoustic/elastodynamic sub-domains are allowed, being no matching nodes required along the common
interfaces. At the end of the paper, numerical examples are presented, illustrating the performance and
potentialities of the adopted procedures.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In engineering analysis there is not a single numerical method
that can handle properly all problems and it did not take long until
some researchers started to combine different methodologies, in
order to profit from their advantages, trying to evade their
disadvantages.

Considering hyperbolic applications, the first works consider-
ing the combination of different numerical procedures were
concentrated in the establishment of a coupled system of equa-
tions, taking into account distinct pre-selected discretization
methods, as reported by manuscripts dealing with time [1–3]
and frequency [4–6] domain analyses. Later on, iterative coupling
algorithms have been proposed, considering once again time [7–9]
and frequency [10–12] domain approaches. In the iterative cou-
pling approach, each sub-domain of the global model is analyzed
independently (as an uncoupled model) and a successive renewal
of the variables at the common interfaces is performed, until

convergence is achieved. These iterative methodologies exhibit
several advantages when compared to standard coupling schemes,
as for instance: (i) different sub-domains can be analysed sepa-
rately, leading to smaller and better-conditioned systems of
equations (different solvers, suitable for each sub-domain, may
be employed); (ii) only interface routines are required when one
wishes to use existing codes to build coupling algorithms (thus,
coupled systems may be solved by separate programme modules,
taking full advantage of specialized features and disciplinary
expertise); (iii) matching nodes at common interfaces are not
required, greatly improving the flexibility and versatility of the
coupled analyses, especially when different discretization methods
are considered; (iv) more efficient analyses can be obtained, once the
global model can be reduced to several sub-domains with reduced
size matrices; etc.

In the present work, an optimised frequency domain iterative
coupling algorithm is presented to analyze interacting acoustic–
elastodynamic models, which are discretized by several different
numerical methods. As it has been reported [10,11], frequency
domain analyses usually give rise to ill-posed problems and, in
these cases, the convergence of simple iterative coupling algo-
rithms can either be too slow or unachievable. In order to deal
with this ill-posed problem and ensure convergence of the
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iterative coupling algorithm, an optimal iterative procedure is
adopted here, with optimal relaxation parameters being computed
at each iterative step. As it is described along the paper, the
introduction of these optimal relaxation parameters allows the
iterative coupling technique to be very effective in the frequency
domain, ensuring convergence at a low number of iterative steps.

Several numerical methods are adopted here in order to
discretize the acoustic and elastodynamic sub-domains. This is
especially important since the numerical analysis of acoustic–
elastodynamic coupled systems is a complex task, requiring
proper treatment of sub-domains in which different physical
phenomena are involved, as well as suitable numerical modelling
of wave propagation across arbitrary shaped interfaces. In this
context, the boundary element method [13,14] and the method of
fundamental solutions [15,16] are here applied to discretize the
acoustic sub-domains, whereas the finite element method [17,18]
and meshless methods based on collocation [19,20] and on local
Petrov–Galerkin discretizations [20,21] are applied to model the
elastodynamic sub-domains. Making use of these different numer-
ical approaches within the present paper, it becomes possible, on
one hand, to show the independence of the proposed iterative
coupling strategy with respect to the adopted methods, and, on
the other, to evidence the relative advantages and disadvantages of
each method for analysing some particular configurations. Thus, a
comparison between the effectiveness of these different meth-
odologies can be carried out taking into account acoustic–elasto-
dynamic coupled analyses. As it is well known, the boundary
element method and the method of fundamental solutions are
boundary discretization techniques, and they are very appropriate
to model infinite and semi-inifinite media, which is usually the
case when acoustic fluids are considered. On the other hand, the
finite element method and the meshless methods discussed here
are domain discretization techniques, being more appropriate to
analyze media with complex physical behaviour (heterogeneities,
anisotropy etc.), which is usually the case considering dynamic
solids.

The paper is organized as follows: first, the governing equa-
tions of the physical problem are presented; then, the focused
discretization methods are briefly discussed. In the sequence, the
iterative coupling technique is described, including the mathema-
tical derivation of the optimisation methodology. At the end of the
paper, numerical applications are presented, illustrating the accu-
racy, performance and potentialities of the proposed procedures.

2. Governing equations

In this section, acoustic and elastodynamic governing equations
are briefly presented, as well as their coupling conditions. Integral
formulations, which are directly employed by the different numer-
ical methods focused here, are presented at the end of the section.

2.1. Acoustic sub-domains

The acoustic scalar wave equation is given by

pðX;ωÞ;ii þ γ2pðX;ωÞ þ sðX;ωÞ ¼ 0 ð1Þ

where p(X,ω) and s(X,ω) stand for hydrodynamic pressure distri-
bution and body source terms, respectively. Indicial notation is
adopted and inferior commas indicate partial space derivatives (p,
i¼∂p/∂xi). γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c2−iων=κ

p
stands for the complex wave number,

where c¼
ffiffiffiffiffiffiffiffi
κ=ρ

p
is the wave propagation velocity and ν, ρ and κ

stand for the viscous damping coefficient, the mass density and
the bulk modulus of the medium, respectively. The boundary

conditions of the problem are given by

pðX;ωÞ ¼ pðX;ωÞ for X∈Γ1 ð2aÞ

qðX;ωÞ ¼ p;jðX;ωÞnjðXÞ ¼ qðX;ωÞ for X∈Γ2 ð2bÞ

where the prescribed values are indicated by over bars and q(X,ω)
represents the flux along the boundary whose unit outward
normal vector components are represented by nj(X). The boundary
of the model is denoted by Γ(Γ1∪Γ2¼Γ and Γ1∩Γ2¼0, where Γ1

stands for the essential or Dirichlet boundary and Γ2 stands for the
natural or Neumann boundary) and the domain by Ω.

2.2. Elastodynamic sub-domains

The frequency domain elastodynamic equations are given by

sijðX;ωÞ;j þ ðρω2−iωρνÞuiðX;ωÞ þ ρbiðX;ωÞ ¼ 0 ð3aÞ

sijðX;ωÞ ¼ λδijεkkðX;ωÞ þ 2μεijðX;ωÞ ð3bÞ

εijðX;ωÞ ¼ 1=2ðuiðX;ωÞ;j þ ujðX;ωÞ;iÞ ð3cÞ

where ui(X,ω) and bi(X,ω) stand for the displacement and the body
force distribution components, respectively. The notation for space
derivatives employed in Eq. (1) is once again adopted. ρ is the mass
density, λ and μ are the Lamé's constants and ν stands for viscous
damping related parameters. sij(X,ω) and εij(X,ω) are, stress and
strain tensor components, respectively and δij is the Kronecker
delta (δij¼1, for i¼ j and δij¼0, for i≠j). Eq. (3a) is the momentum
equilibrium equation; Eq. (3b) represents the constitutive law of
the linear elastic model and Eq. (3c) stands for kinematical
relations. The boundary conditions of the elastodynamic problem
are given by

uiðX;ωÞ ¼ uiðX;ωÞ for X∈Γ1 ð4aÞ

τiðX;ωÞ ¼ sijðX;ωÞnjðXÞ ¼ τiðX;ωÞ for X∈Γ2 ð4bÞ

where τi(X,ω) denotes the traction vector along the boundary.

2.3. Acoustic–elastodynamic interacting interfaces

On the acoustic–elastodynamic interface boundaries, the
dynamic sub-domain normal (normal to the interface) displace-
ments (un(X,ω)) are related to the acoustic sub-domain fluxes (q(X,
ω)), and the acoustic sub-domain hydrodynamic pressures (p(X,ω))
are related to the dynamic sub-domain normal tractions (τn(X,ω)).
These relations are expressed by the following equations:

unðX;ωÞ þ 1=ðρω2ÞqðX;ωÞ ¼ 0 ð5aÞ

τnðX;ωÞ þ pðX;ωÞ ¼ 0 ð5bÞ
where ρ stands for the mass density of the interacting acoustic
sub-domain medium.

2.4. Integral equations

Taking into account a generic matricial notation, the strong,
weak and inverse integral forms of the acoustic and elastodynamic
governing equations correspondingly can be written as follows:
Z
Ω
vT ðLTdDLdyÞdΩþ

Z
Ω
vTςydΩþ

Z
Ω
vTβdΩ¼ 0 ð6aÞ

Z
Ω
ðvTLTdÞDLdydΩ−

Z
Γ
vT ðLTnDLdyÞdΓ−

Z
Ω
vTςydΩ−

Z
Ω
vTβdΩ¼ 0 ð6bÞ
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