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Abstract

This paper is devoted to discrete semi-hidden Markov models (SHMM), which are related to the well-known hidden Markov
models (HMM). In particular, the HMM associated to an SHMM is defined, and the forward algorithm for solving the evaluation
problem in SHMMs is introduced. Experiments show that in a set of randomly generated sequences with different SHMMs, the
maximum value for the conditional probability of each sequence being generated by the model most frequently matches the model
that generated the sequence. Something similar happens to associated HMMs, suggesting that the HMM associated to a given
SHMM shows a certain affinity to this, which is higher than other HMMs.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

A hidden Markov model (hereinafter HMM) is a powerful statistical tool to characterize discrete-time series. In
this context the system being modelled is assumed to be a Markov process with unobserved (hence hidden) states.

Initially proposed by L.E. Baum and others [1–5], HMMs are widely used in science and engineering in many
areas such as speech recognition, optical character recognition, machine translation, computer vision, finance and
economics, social sciences, etc. HMMs are especially known for their application in temporal pattern recognition
such as speech, handwriting, gesture recognition, part-of-speech tagging, musical-score following and bioinformatics
[8–13,15].

Discrete semi-hidden Markov models (hereinafter SHMM), recently introduced in [14], are a new kind of stochastic
models related with HMMs. Strictly speaking, an SHMM is not a Markov model, since it does not verify the “Markov
property” [7], that is a characteristic of memoryless sources. A source driven by an SHMM changes its state depending
not on the current state but on the last already emitted symbols, unlike HMMs. The number of last emitted symbols
determining the new state can be called the memory size of the source.
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Given a symbolic sequence emitted by an HMM source, determining the sequence of states run by the source is, in
general, impossible. However, given a symbolic sequence generated by an SHMM source, then it is possible to know
the sequence of states if we know the state changing positions [14]. This is why an SHMM is not completely hidden,
and it is called semi-hidden.

There are certain symbolic sequences in which long and frequent runs can appear, either of a unique repeated
symbol, or also compositional runs (constant frequencies for each symbol along a fragment of the sequence).
Furthermore, there can be cases in which the emitting source shows a high inertia (high resistance to change the
current state). SHMM are intended to modelize the behaviour of symbolic sequences showing memory and inertia,
such as a temporal series of temperatures in a short period of time. The temperature of an object in a given instant
is not expected to be very different than that in the previous instant, which means that the system evolves with some
kind of memory and inertia.

This paper is organized as follows: in Section 2, formal descriptions of HMM and SHMM are included; in Section 3
a new concept, the HMM associated to a given SHMM, is introduced and illustrated; in Section 4, the forward
algorithm for HMMs is described1; in Section 5, an analogous efficient new algorithm is introduced to solve the
same problem as in the previous section, but related to a given SHMM source; Section 6 is devoted to presenting
a set of experiments to show the performance of the forward algorithm to discriminate between the corresponding
generating models and their associated ones.

2. Component elements of discrete HMM and SHMM

Although both kind of stochastic models have been already defined, definitions of HMM and SHMM are given in
this Section. Since HMMs are well known and widely studied in literature [1–5,13], no more comments are included
here. Concerning SHMMs, a brief explanation of the meaning and effect of each SHMM parameter on the generated
sequences is included at the end of this Section.

2.1. Elements of an HMM

The elements of a discrete HMM are the following [13]:

• The alphabet V = {v1, . . . , vm}, with m symbols, m ∈ N.
• The set {1, 2, . . . , n} of n hidden states, n ∈ N.
• The n×n right stochastic transition matrix among states A = {ai j }, 1 ≤ i, j ≤ n, 0 ≤ ai j ≤ 1,

n
j=1 ai j = 1 ∀i .

Each matrix element ai j = P[qt+1 = j |qt = i] is the probability of changing from state i to j at any position
t when generating a sequence, being qt the current state at position t in the sequence. As in [13], we label the
individual states as {1, 2, . . . , n}.

• The n × m right stochastic matrix of probability distributions of symbols emission in each state B = {b jk}, 0 ≤

b jk ≤ 1, 1 ≤ j ≤ n, 1 ≤ k ≤ m,
m

k=1 b jk = 1 ∀ j .
• The initial-state probability distribution Π = {πi }, i = 1, 2, . . . , n.

Note that in the definition of matrices A and B, a numerical order in the model states and alphabet symbols is
assumed. In the specialized literature, an HMM is denoted by the 3-tuple λ = {A, B,Π }. A source that emits symbols
driven by an HMM is called an HMM source.

2.2. Elements of a discrete SHMM

A discrete SHMM is a stochastic model that operates by switching among different states and generating symbols
of an alphabet in a similar way to an HMM. It has been presented in [14] and its main features are included here for
the benefit of the reader. Although they are not Markov models (do not verify the “Markov property”), these models
are related to HMM ones, and are intended to generate and analyse symbolic sequences containing frequent runs.2

The elements of an SHMM model are the following:

1 The forward algorithm is a procedure to efficiently compute the conditional probability P[O|λ] of generating a particular sequence O , given
the model λ.

2 In this context we consider that a run is a segment of statistically constant composition along its length, including the degenerate case of a chain
of one repeated symbol.
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