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a b s t r a c t

A meshfree point collocation method is used for the numerical simulation of both transient and steady
state non-linear Poisson-type partial differential equations. Particular emphasis is placed on the
application of the linearization method with special attention to the lagging of coefficients method
and the Newton linearization method. The localized form of the Moving Least Squares (MLS)
approximation is employed for the construction of the shape functions, in conjunction with the general
framework of the point collocation method. Computations are performed for regular nodal distributions,
stressing the positivity conditions that make the resulting system stable and convergent. The accuracy
and the stability of the proposed scheme are demonstrated through representative and well-established
benchmark problems.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Non-linearity is inherent in the majority of physical phenom-
ena and engineering processes, resulting in non-linear ordinary or
partial differential equations. In fact, these non-linear equations
are usually difficult to solve, since no general technique works
globally and, thus, each individual equation has to be studied as a
separate problem. Of particular interest are the non-linear Pois-
son-type equations that are encountered in transport problems,
notably heat conduction, mass transport and flow in different
geometries, including pore structures.

Solutions to this type of problems are usually required in
non-regular two- and three-dimensional geometries with non-
uniform boundary conditions. The non-linear character of the
partial differential equations that govern these problems ren-
ders the analytical solution either difficult or impossible, espe-
cially when dealing with irregular geometries and complex
boundary conditions. The use of conventional numerical proce-
dures, such as finite differences [1], finite elements [2], bound-
ary element method [3], etc., to solve these problems
necessitates high levels of discretization, resulting in large
computational time. In fact, the difficulty of the finite difference
method to deal with problems with irregular geometry is a
major drawback of the method. On the other hand, the finite

element methods do handle irregular geometries, yet the
refinement procedure becomes a major task.

To overcome these drawbacks, new sophisticated numerical
methods have appeared over the last years [4,5]. Meshless (or
meshfree) methods emerged as potential candidates to replace
traditional numerical methods for problems where the latter failed
to provide accurate or fast results. Thus, the challenges that these
methods have to face are both the efficiency and the accuracy of
computations. In a general sense, a numerical method must be
robust and accurate in order to be able to provide numerical
results in real time when dealing with real world applications.
Additionally, they have to deal with the complexity of the
phenomena under consideration, which makes the computations
even more challenging. In fact, in cases where no analytical
solutions are available, the refinement procedure becomes a
necessity and, therefore, an easy and efficient refinement proce-
dure must be available. Despite the tremendous improvement of
the meshless methods, they are still at their early stages of
development and, thus, several test studies must be conducted
in order for these methods to establish themselves as more
general practical tools ([6] and references there in). Among the
existing meshless approximation/interpolation methods, both
Moving Least Squares (MLS) and Radial Basis Functions (RBF) have
been widely used to solve numerous challenging problems [7].
Meshfree methods based on MLS have a clear advantage over
other meshfree methods thanks to the simplicity and stability of
the MLS method in field variable approximation/interpolation
[4,5]. The meshless methods provide accurate numerical results
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when dealing with certain Poisson-type problems, linear and non-
linear, in two and three dimensions [8–13]. The governing equa-
tions can be solved in their weak form [10–12] or in their strong
formulation [8,9,13]. Despite their accuracy, the former methods
deal with the computation of integrals and may prove very time
demanding and inaccurate, whereas the latter lead to dense
matrices that can be difficult to solve when dealing with real
world applications with increased number of degrees of freedom.
Despite their computational cost, thanks to their key advantage of
being applicable to arbitrarily irregular geometries, they are
attractive for solving non-linear Poisson type problems.

In this work, a meshfree point collocation method is used for
the numerical simulation of both transient and steady state non-
linear Poisson-type partial differential equations with the objec-
tive to extend the applicability of the method to a wider range of
non-linear differential equations. The strong form equations are
solved with the collocation method. The implementation is easy
and straightforward and, the resulting linear system is sparse and
positive definite. Thus, the numerical solution of the harmonic
operator can be accurate and fast, taking advantage of the sparsity
of the matrix. The article is organized as follows. In Section 2, the
governing equations are presented along with a complete descrip-
tion of the MLS approximation scheme. Section 3 presents the
meshless point collocation transient, coupled solver along with a
θ-weighted time discretization approach, which is employed to
solve numerically the partial differential equations. Numerical
issues are discussed in Section 4, where typical transient and ste-
ady state physical problems are solved and the validity of the pro-
posed meshless techniques is demonstrated. Finally, in Section 5,
the main conclusions are discussed.

2. Mathematical problem and approximation procedure

2.1. Governing equations

Consider the following partial differential equation:

∂u
∂t

¼Δuþ f ðx;u;u;x;u;y;u;xx;u;xy;u;yyÞ ð1Þ

for the physical field u, subject to the following boundary and
initial conditions:

� Dirichlet boundary condition for the unknown field:

u¼ uD on ∂ΩD

� Neumann boundary condition for the component of the field-
gradient normal to the boundary:

q¼ qN on ∂ΩN

� Mixed (Robin) boundary condition for the component of the
field-gradient normal to the boundary:

auþ βq¼ BR on ∂ΩR

� Initial condition at t¼0:

u¼ u0 on Ω

where x∈ℝd is the position vector, d¼2 is the dimension of domain
Ω(x,y), which has a piecewise smooth boundary ∂Ω. Δ represents
the Laplacian operator, and q stands for the boundary normal flux
defined by q¼ −∂u=∂n, with n the unit outward normal to the
boundary ∂Ωð∂Ω¼ ∂ΩD∪∂ΩN∪∂ΩRÞ, uD, qN are specified values on

the boundary, respectively, whereas α, β, ΒR are known coefficients.
Eq. (1) applies to a wide range of engineering problems that
distinguish themselves through the type of the right-hand side
function f. More precisely, Eq. (1) can be reduced to a standard
Poisson equation or Helmholtz equation if f is a function of
position vector x or a linear function of physical field u, respec-
tively. More generally, f may be a nonlinear function of physical
field u and its derivatives. The method that is presented below is
able to handle these types of problems.

2.2. Moving Least Squares shape functions

In the context of the meshless approximation/interpolation
schemes, the MLS method [14] is widely used, since it can directly
approximate the field variables in a local manner and, additionally,
can be easily extended to n-dimensional problems. A brief sum-
mary of the MLS approximation scheme is given next.

Within the MLS context, the approximation uh(x) of the
unknown field function u(x) is expressed as:

uhðxÞ ¼ ∑
m

i ¼ 1
piðxÞαiðxÞ ¼ pT ðxÞaðxÞ ð2Þ

where pT(x) is a polynomial basis in the space coordinates, that
consists most often of monomials of the lowest order to ensure
completeness, m is the total number of the terms in the basis and,
α(x) is the vector of coefficients, given by

αðxÞ ¼ ðα0ðxÞ; α1ðxÞ; :::; αmðxÞÞT ð3Þ
which is a function of x. Due to the local nature of the approxima-
tion, the polynomial basis can be written as

pT ðx−xiÞ ¼ ½1; ðx−xiÞ; ðy−yiÞ; :::; ðx−xiÞðy−yiÞm−1; ðy−yiÞm� ð4Þ
in 2D problems. Herein, a second order (m¼6) polynomial basis is
used,

pT ðxÞ ¼ ½1; ðx−xiÞ; ðy−yiÞ; ðx−xiÞ2; ðx−xiÞðy−yiÞ; ðy−yiÞ2� ð5Þ
The derivatives of the unknown field function are up to second

order. Thus, in the context of strong form collocation the mono-
mial basis has to be at least second order. For our computations we
used the lowest (second) order of monomials that ensured both
convergence and accuracy for the harmonic operator [5]. There
exists a unique local approximation associated with each point in
the domain. To obtain the local approximation of the function u(x)
and determine the form of α(x), the difference between the local
approximation uh(x) and the function u(x) must be minimized.
Thus, a weighted discrete error norm,

JðxÞ ¼ ∑
n

i ¼ 1
wiðx;xiÞ½uhðxÞ−uðxÞ�2 ¼ ∑

n

i ¼ 1
wiðx;xiÞ½pT ðxiÞaðxÞ−uðxiÞ�2

ð6Þ
is constructed and minimized with respect to the vector α(x) of
coefficients. The weight function wiðx;xiÞ≡wðx−xiÞ is usually built in
such a way that it takes a unit value in the vicinity of node i, where
the function and its derivatives are to be computed, and vanishes
outside a region Ωi surrounding the point xi (called the support
domain of node i), with n being the number of nodes in the
domain. The choice of the weight function wðx−xiÞ affects the
resulting approximation uhðxiÞ significantly. In the present work, a
Gaussian weight function is used [5], yet the support domain does
not have a standard point density value. Instead, a constant
number of nodes are used for the approximation of the field
function. That is,

wiðxÞ ¼
e−ðDðxÞ=diÞ

2
0≤ DðxÞ

di
≤1

0 DðxÞ
di

41

8<
:

9=
;; ð7Þ
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