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Abstract

This paper presents a new method of controlling a unified chaotic system by using output feedback control strategy. In particular,
for an arbitrarily given equilibrium point of a unified chaotic system, we design explicit and simple output feedback control laws by
which the equilibrium point is globally and exponentially stabilized. Computer simulations are employed to illustrate the theoretical
results.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Chaotic system is a complex dynamical nonlinear system and its response exhibits some specific characteristics
such as excessive sensitivity to initial conditions, broad Fourier transform spectrums, and irregular identities of
the motion in phase space [4,10,17,18]. Also, it has been found to be useful in analyzing many problems, such as
information processing, power systems collapse prevention, high-performance circuits and devices, etc.

In 1963, Lorenz presented the first classical chaotic system [10] in a third-order autonomous system with only two
multiplication-type quadratic terms but the system displays very complex dynamical behaviors. Chen and Ueta found
another chaotic system in 1999, the Chen system, which is similar, but topologically non-equivalent to the Lorenz
system [4]. By the definition of Vanecek and Celikovsky [17], the two systems belong to two different types: The
Lorenz system satisfies the condition a12a21 > 0 and the Chen system satisfies a12a21 < 0, where a12 and a21 are
the corresponding elements in the linear part matrix A = (ai j )3×3 of the system. In 2002, Lü and Chen found another
critical system between the Lorenz and Chen systems, bearing the name of the Lü system [11], which satisfies the
condition of a12a21 = 0. To bridge the gap between the Lorenz and Chen systems, Lü et al. introduced a unified
chaotic system [12] in the same year, which contains the Lorenz and Chen systems as two extremes and the Lü system
as a transition system between the Lorenz and Chen systems [3,12].

For quite a long period, people thought that chaos was neither predictable nor controllable. However, the OGY
method [20] developed in 1990s of the last century had completely changed the situation, and then the study of chaos
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control began. The main goal of chaos control was to eliminate chaotic motion and to stabilize one of the system’s
equilibrium points. Until now, many efficient approaches had been proposed for controlling chaos, such as state
feedback control [3], variable structure control [19], generalized OGY control [20], inverse optimal control [14,15],
parameter identification control [3], digital control [3], fuzzy control [1,2], adaptive control [3,5], and data sampling
control [13], etc. Most of these methodologies need state vectors, while the state vectors are not all measurable in
practical application, and thus they are not very useful in practice.

In this paper, based on appropriate Lyapunov functions [6–9], we provide a new method to design explicit and
simple output feedback controllers. For an arbitrarily given equilibrium point of a unified chaotic system, we design
output feedback controllers to stabilize the equilibrium point globally, with exponential convergence, and provide the
Lyapunov negative exponent estimation. This is particularly useful in practical designs. Computer simulations are
presented to illustrate the theoretical results.

2. Main results

Consider the unified chaotic system described by [16]

ẋ1 = (25α + 10)(x2 − x1)

ẋ2 = (28 − 35α)x1 + (29α − 1)x2 − x1x3

ẋ3 = x1x2 −
8 + α

3
x3

y = x2

(1)

where x1, x2, x3 are state variables, y is the output variable, and α ∈ [0, 1]. Obviously, system (1) becomes the original
Lorenz system for α = 0; while system (1) becomes the original Chen system for α = 1. When α = 0.8, system
(1) becomes the critical system. In particular, system (1) bridges the gap between Lorenz system and Chen system.
Moreover, system (1) is always chaotic in the whole interval α ∈ [0, 1]. It is easy to find the three equilibrium points
of the system:

E1 = (0, 0, 0), E2 = (β, β, γ ), E3 = (−β, −β, γ )

where β =
√

(8 + α)(9 − 2α) and γ = 27 − 6α.
Denoting the above equilibrium points as (x0

1 , x0
2 , x0

3), the following transformation is introduced:

ei = xi − x0
i , (i = 1, 2, 3),

ey = y − x0
2

(2)

and then by adding output feedback controls to system (1), the following control system can finally get yielded:

ė1 = (25α + 10)(e2 − e1) + u1(ey)

ė2 = (28 − 35α − x0
3)e1 + (29α − 1)e2 − e1e3 − x0

1 e3 + u2(ey)

ė3 = −
8 + α

3
e3 + e1e2 + x0

2 e1 + x0
1 e2

ey = e2

(3)

where ui (ey) are linear control functions satisfying ui (0) = 0, (i = 1, 2).
Before proceeding further, we will state a well-known lemma as follows.

Lemma 1. For any real scalar ϵ > 0 and any vectors with appropriate dimensions a and b, the following inequality
holds:

2|ab| ≤ ϵa2
+ ϵ−1b2.

Theorem 1. The following control:

u1 = k1ey, k1 = −(10 + 25α),

u2 = k2ey, k2 = 1 − 29α − µ, (µ > 0)
(4)

can be used to stabilize the equilibrium point (x0
1 , x0

2 , x0
3) globally, where µ is a given parameter satisfying µ > 0.
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