
Available online at www.sciencedirect.com

ScienceDirect

Mathematics and Computers in Simulation 133 (2017) 39–46
www.elsevier.com/locate/matcom

Original articles

Stationary and oscillatory patterns in a coupled Brusselator model

Roumen Anguelov∗, Stephanus Marnus Stoltz

Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa

Received 29 December 2014; received in revised form 21 April 2015; accepted 2 June 2015
Available online 5 August 2015

Abstract

This paper presents a numerical investigation into the pattern formation mechanism in the Brusselator model focusing on the
interplay between the Hopf and Turing bifurcations. The dynamics of a coupled Brusselator model is studied in terms of wavelength
and diffusion, thus providing insight into the generation of stationary and oscillatory patterns. The expected asymptotic behavior is
confirmed by numerical simulations. The observed patterns include inverse labyrinth oscillations, inverse hexagonal oscillations,
dot hexagons and parallel lines.
c⃝ 2015 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Models involving termolecular reaction steps exhibit interesting properties and pose challenging mathematical
problems regarding the asymptotic behavior of the solutions. It is well-known that models of reaction sequences with
two intermediates and only uni- and bimolecular steps do not admit limit cycles [3, Section 7.1]. Therefore, for insta-
bility to occur in the thermodynamic branch (the solution in equilibrium) one needs to use cubic reaction rates [1,9,3].

The following reaction sequence was studied by Prigogine and Lefever in 1968 [5]:
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We note that the third step in the sequence involves a cubic nonlinear reaction term. Under the assumptions that

(i) D and E are removed from the reaction domain the instant they are produced (or equivalently, k−2 = k−4 = 0),
(ii) the nonlinear reaction is irreversible (k−3 = 0),

(iii) A is in sufficient abundance,

the dynamics of the reaction sequence is represented in [5] by two rate equations:
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By scaling of the variables,
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the model (1) is simplified to the following model involving only two parameters.

∂u

∂t
= a − (b + 1)u + u2v + Du∇

2u

∂v

∂t
= bu − u2v + Dv∇

2v. (3)

The system (3) of reaction diffusion partial differential equations is known as the trimolecular model or the
Brusselator model, the latter term coined by Tyson in 1973 [8]. This model has been widely used to illustrate and study
basic features of chemical reaction models involving trimolecular steps. In some sense it plays in the settings of these
models a pivotal role similar to the role the harmonic oscillator and the Heisenberg model play in ferromagnetism [3].

This paper presents a numerical investigation into the pattern formation mechanism in the Brusselator model. The
next section (Section 2) is devoted to studying the interplay between the two bifurcations in the model, namely the
Hopf bifurcation and the Turing bifurcation. This investigation is largely motivated by the observations in [12] that
Turing patterns eventually (for sufficiently small ratio of the diffusion coefficients) dominate the Hopf bifurcation
induced oscillations. The numerical simulations yield a hyperbola-like shaped boundary between the two regions.
Oscillatory patterns are observed only in a small area near the horizontal part of curve. Based on these results,
Section 3 deals with pattern formation in a coupled Brusselator model, that is, two systems of the form (3) linked via
linear interaction terms. The study of the dynamics of this model in terms of wavelength and diffusion provides insight
into generation of stationary and oscillatory patterns. The expected asymptotic behavior is confirmed by numerical
simulations. The observed patterns include inverse labyrinth oscillations, inverse hexagonal oscillations, dot hexagons
and parallel lines. In Section 4 we provide some concluding remarks and directions for future work. For completeness
of the exposition, details on the numerical method used for the simulations are presented in Appendix.

2. Turing and Hopf bifurcations in the Brusselator model

The system (3) has one spatially homogeneous steady state, u∗
= a, v∗

=
b
a . Its stability is influenced by

two factors: the appearance of spatially homogeneous limit cycle (Hopf bifurcation) and the ratio of the diffusion
coefficients (Turing instability). We recall them briefly.

The spatially homogeneous solutions of (3) satisfy the system of ODEs

du

dt
= a − (b + 1)u + u2v,

dv

dt
= bu − u2v. (4)
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