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a b s t r a c t

In this paper, a three-dimensional (3-D) adaptive analysis procedure is proposed using the meshfree

node-based smoothed point interpolation method (NS-PIM). Previous study has shown that the NS-PIM

works well with the simplest four-node tetrahedral mesh, which is easy to be implemented for

complicated geometry. In contrast to the displacement-based FEM providing lower bound solutions,

the NS-PIM possesses the attractive property of providing upper bound solutions in strain energy norm.

In the present adaptive procedure, a novel error indicator is devised for NS-PIM settings, which

evaluates the maximum difference of strain energy values among four nodes in each of the tetrahedral

cells. A simple h-type local refinement scheme is adopted and coupled with 3-D mesh automatic

generator based on Delaunay technology. Numerical results indicate that the adaptive refinement

procedure can effectively capture the stress concentration and solution singularities, and carry out local

refinement automatically. The present adaptive procedure achieves much higher convergence in strain

energy solution compared to the uniform refinement, and obtains upper bound solution in strain

energy efficiently for force driven problems.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that adaptive analysis is important in the
computational mechanics and engineering structural designs. The
ultimate objective of adaptive analysis is to achieve desired high
accuracy with minimum computational cost. Adaptive mesh
refinement techniques along with proper error analysis have been
well studied in the traditional FEM [1–4], but much less well-
developed for meshfree method [5,6].

The meshfree node-based point interpolation method (NS-PIM
or LC-PIM) [7] has been recently developed using the generalized
smoothed Galerkin (GS- Galerkin) weak form [8] and PIM shape
functions with a set of small number of nodes located in a local
support domain. The PIM (polynomial PIM or radial PIM) shape
functions possess Delta function property, which allows straight-
forward imposition of point essential boundary conditions. The
use of node-based smoothing domains [7,9–11] provides the
so-called ‘‘soft’’ effect to the discrete model and gives a number
of good features. Compared with the linear FEM, NS-PIM can

obtain better accuracy and higher convergence rate, especially for
stress results. Recently, Liu and Zhang [12] made a thorough
theoretical study on the NS-PIM and obtained some important
conclusions including the upper bound property. NS-PIM is easy
to be implemented and suitable for adaptive analysis. An adaptive
analysis using the NS-PIM has been conducted to certify solutions
with exact bounds of strain energy for 2-D problems [13].

A reliable and efficient error indicator and the associated
refinement strategy are crucial issues for the adaptive procedure,
especially for 3-D problems. In general, two distinct types of
procedures are currently available for deriving error indicators:
the recovery based error indicator and the residual based error
indicator. The recovery based error indicator was first introduced
by Zienkiewicz and Zhu [1] in 1987, by constructing locally an
improved solution from the approximation. The recovery pro-
cesses play a critical role in the computation of this error
indicator and there are many papers published on this recovery
methodology [2,14,15]. Residual based error indicators make use
of the residual of the numerical approximation, either explicitly
or implicitly, which offers a very effective alternative [16–20].

Refinement schemes can also be classified into three categories:
h-refinement, p-refinement and r-refinement. The h-refinement
scheme changes the size of element in a localized fashion based on
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the error indicator. The p-refinement scheme is to increase the order
of the polynomial, and the r-refinement keeps the total number of
nodes unchanged but to adjust their position to obtain an optimal
approximation [21,22]. Because the NS-PIM works well with lower
order interpolation of displacement field, this work chooses to use the
h-refinement in our adaptive analysis.

In the framework of element-free Galerkin (EFG) method,
Chung and Belytschko [23] proposed local and global error
indicator for adaptive analysis. Furthermore, Lee and Zhou
[24,25] have done intensive works for refinement scheme in
EFG. Duarte and Oden [26] derived an error indicator that
involves the computation of the interior residuals and the
residuals for Neumann boundary conditions for hp-cloud method.
Belytschko et al. [27] have used the adaptive analysis based on
the residuals for the reproducing kernel particle method (RKPM).
Gan et al. [28] presented the adaptive procedure of RKPM for 3D
contact problems with elastic–plastic dynamic large deformation.
Liu and Tu [29] have introduced an adaptive procedure for
meshfree methods using an error indicator of energy error
computed via different order of sampling in Gauss integration
based on background cells. Rabczuk and Belytschko [30] proposed
adaptive analysis for structured meshfree particle methods in 2-D
and 3-D problems. Park and Kwon [31] used a least square mesh
free method with Voronoi cells to refine interesting regions.
Angulo et al. [32] implemented adaptive produce of meshfree
finite point method for solving boundary value problems.

In this paper, we propose an efficient error indicator and the
associated refinement scheme within the framework of the NS-PIM
for adaptive analysis of three-dimensional problems. The new error
indicator is defined based on maximum differences of strain energy
between the four of each tetrahedral cells connected to the node.
A simple h-type refinement scheme is then implemented with an
effective strategy for adding in nodes into the regions identified by
the error indicator. An automatic three-dimensional mesh generator
based on Delaunay technology is next coded to generate high quality
tetrahedral meshes for each step in the adaptive process. Adaptive
analysis is finally performed for a number of 3-D problems, including
ones with stress concentration and singularities. The results demon-
strate that the present adaptive procedure performed very well for
the NS-PIM to obtain solutions of desired accuracy and with upper
bounds to the exact solution.

The paper is organized as follows. In Section 2, a brief
description and the basic equations of NS-PIM are given. Section
3 describes the effective adaptive procedure, including the defini-
tion of error indicator, the calculation of local critical value, the
strategy of refinement and the three-dimensional mesh automatic
generation. In Section 4, analyses of some 3-D numerical pro-
blems are carried out to assess the capabilities of the proposed
adaptive procedure. Conclusions are stated in Section 5.

2. Briefing on the NS-PIM

2.1. Basic equations

Consider a solid mechanics problem in three-dimensional domain
O bounded by G(G¼GtþGu). The standard strong form governing
equations can be expressed by the following equations [33]:

Equilibrium equation

LTrþb¼ 0 in O, ð1Þ

where L is a differential operator in the following form,
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rT ¼ sxx syy szz sxy syz szx

n o
is the vector containing

stress component, uT ¼ u v w
� �

is the displacement vector,
and bT

¼ bx by bz

n o
is the external body force vector.

Essential boundary conditions:

u¼ up on Gu, ð3Þ

where up is the prescribed displacement on the essential
boundaries.

Natural boundary conditions:

r Un¼ tp on Gt , ð4Þ

where tp is the prescribed traction on the natural boundaries, and
n is the vector of unit outward normal on Gt.

2.2. Construction of PIM shape functions

PIM shape functions are constructed using a set of small
number of nodes located in a local support domain. There are
two types of PIM shape functions, which have been developed
with different basis functions, i.e. polynomial basis functions
[7,9,12,34] and radial basis functions [11,35–38]. In this work
we use both the simplest linear polynomial basis functions and
effective radial basis functions to construct PIM shape functions.

For the polynomial PIM, the formulations start with the
following assumption:

uðxÞ ¼
Xn

i ¼ 1

PiðxÞai ¼ PT
ðxÞa, ð5Þ

where u(x) is a field variable function defined in the Cartesian
coordinate space xT ¼ x y z

� �
, Pi(x) is the basis function of

monomials, which is usually built utilizing Pascal’s triangles, ai is
the corresponding coefficient, and n is the number of nodes in the
local support domain.

For the radial PIM, using radial basis functions augmented
with polynomials, a field variable function u(x) can be approxi-
mated as follows:

uðxÞ ¼
Xn

i ¼ 1

RiðxÞaiþ
Xm
j ¼ 1

PjðxÞbj ¼RT
ðxÞaþPT

ðxÞb, ð6Þ

where Ri(x) and Pj(x) are radial basis functions and polynomial
basis functions, respectively, ai and bj are corresponding coeffi-
cient, n is the number of nodes in the local support domain used
for constructing RPIM shape functions and m is the number of
polynomial terms augmented to the radial basis functions [6].

The coefficients in Eqs. (5) and (6) can be determined by
enforcing the field function to be satisfied at the n nodes within
the local support domain. Finally, the PIM shape functions can be
obtained and a displacement component can be interpolated as

uðxÞ ¼UT
ðxÞUs, ð7Þ

where U(x) is the row-matrix of PIM shape functions and Us is the
vector of nodal displacement [6].

When linear polynomial PIM shape functions are used, four
vertexes of the background four-node tetrahedron cell are taken
to perform the interpolation of the interest points located inside
the cell, which is same as the linear FEM does. This can be easily
implemented and can always ensure the invertibility of the
moment matrix, as long as the four vertexes of the tetrahedron
are not on a plane. When radial PIM shape functions are used, we
use eight nodes to perform the approximation: four vertexes of
the cell plus four nodes located at the remote vertices of the four
neighboring cells. For a boundary cell with three neighboring
cells, four vertexes of the cell, three vertexes of its neighboring
cells and another closet to the point of interest will be selected for
constructing the RPIM shape functions.
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