
Available online at www.sciencedirect.com

ScienceDirect

Mathematics and Computers in Simulation 135 (2017) 18–27
www.elsevier.com/locate/matcom

Original articles

Recent constructions of low-discrepancy sequences

Harald Niederreiter

Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstr. 69, A-4040 Linz, Austria

Received 7 January 2014; received in revised form 28 July 2014; accepted 7 October 2014
Available online 16 October 2014

Abstract

We present a survey of the recently developed theory of (u, e, s)-sequences which has led to new constructions of low-
discrepancy sequences. We also review recent constructions of low-discrepancy sequences by means of ergodic theory.
c⃝ 2014 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Low-discrepancy sequences are basic ingredients of quasi-Monte Carlo methods for numerical integration. The
standard error bounds for quasi-Monte Carlo integration, such as the Koksma–Hlawka inequality (see [9, Section 2.5]),
guarantee a rate of convergence faster than the Monte Carlo rate of convergence if the integration nodes are
taken from a low-discrepancy sequence. The widespread use of quasi-Monte Carlo methods in areas like scientific
computing, computational finance, and computer graphics implies a heavy demand for concrete sequences with as
low a discrepancy as possible. The explicit construction of low-discrepancy sequences has a long history, with the first
construction of a low-discrepancy sequence for any dimension dating back to 1960 (see Halton [6] and Section 3).
Many exciting developments in this area have taken place since then, and in the present paper we survey construction
principles that were found in the last few years. For a general background on low-discrepancy sequences and
quasi-Monte Carlo methods, we refer to the monographs [2] and [11].

Let s ≥ 1 be a given dimension and let P be a point set consisting of N points x1, . . . , xN in the s-dimensional
unit cube [0, 1]

s . For an arbitrary subinterval J of [0, 1]
s , we introduce the local discrepancy

R(J ; P) =
A(J ; P)

N
− λs(J ),

where A(J ; P) is the number of integers n with 1 ≤ n ≤ N such that xn ∈ J and λs denotes the s-dimensional
Lebesgue measure. Then we define the star discrepancy

D∗

N (P) = sup
J

|R(J ; P)|,
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where the supremum is extended over all subintervals J of [0, 1]
s with one vertex at the origin. For an infinite sequence

S of points in [0, 1]
s and any integer N ≥ 1, let D∗

N (S) be the star discrepancy of the point set consisting of the first
N terms of S. We say that S is a low-discrepancy sequence if

D∗

N (S) = O


N−1(log N )s


for all N ≥ 2,

where the implied constant is independent of N . The asymptotic order of magnitude N−1(log N )s is the best that can
currently be achieved for the star discrepancy of an infinite sequence of points in [0, 1]

s . We refer to [2, Section 3.2]
for a survey of known lower bounds on the star discrepancy.

The emphasis in this paper is on types of low-discrepancy sequences that are called (u, e, s)-sequences. The theory
of (u, e, s)-sequences was developed very recently, and we present the basics of this theory in Section 2. The principal
constructions of (u, e, s)-sequences, which use global function fields, are described in Section 3. Some other recent
constructions of low-discrepancy sequences are reviewed in Section 4.

2. (u, e, s)-sequences

Many of the classical constructions of low-discrepancy sequences, such as the constructions of Sobol’ se-
quences [29], Faure sequences [3], Niederreiter sequences [17], generalized Niederreiter sequences [31], and
Niederreiter–Xing sequences [23,33], are based on the theory of (t,m, s)-nets and (t, s)-sequences introduced in [16].
Expositions of this theory can be found in the monographs [2] and [18] as well as in the recent handbook article [20].
Therefore we will just recall the basic definitions of this theory here, and then we move on to a recent extension of
this theory due to Tezuka [32].

Let b ≥ 2 be an integer which will be called the base in the sequel. For a given dimension s ≥ 1, a subinterval J
of [0, 1]

s of the form

J =

s
i=1

[ai b
−di , (ai + 1)b−di ) (1)

with integers di ≥ 0 and 0 ≤ ai < bdi for 1 ≤ i ≤ s is called an elementary interval in base b. For integers 0 ≤ t
≤ m, a point set P consisting of bm points in [0, 1)s is called a (t,m, s)-net in base b if its local discrepancy satisfies
R(J ; P) = 0 for all elementary intervals J ⊆ [0, 1]

s in base b with λs(J ) ≥ bt−m . It is obvious that smaller values
of the parameter t signify stronger equidistribution properties of a (t,m, s)-net in base b. A generalization of this
concept was recently introduced by Tezuka [32], and we define it in the slightly narrower form presented in Hofer and
Niederreiter [7]. Here and in the following, N denotes the set of positive integers.

Definition 1. Let b ≥ 2, s ≥ 1, and 0 ≤ u ≤ m be integers and let e = (e1, . . . , es) ∈ Ns . A point set P of bm points
in [0, 1)s is called a (u,m, e, s)-net in base b if for every elementary interval J in base b of the form (1) with ei |di for
1 ≤ i ≤ s and λs(J ) ≥ bu−m we have R(J ; P) = 0.

Remark 1. The case e = (1, . . . , 1) ∈ Ns corresponds to the concept of a (t,m, s)-net in base b with t = u. The
original definition in [32] has the condition λs(J ) = bu−m instead of λs(J ) ≥ bu−m . This causes some unusual
problems. For instance, a point set P can be a (u,m, e, s)-net in base b for some u with 0 ≤ u < m, but P need not
be a (v,m, e, s)-net in base b for a certain value of v with u < v ≤ m (see the example in [7, Remark 2]). Definition 1
guarantees that a (u,m, e, s)-net in base b is also a (v,m, e, s)-net in base b for any integer v with u ≤ v ≤ m.

The classical notion of a (t, s)-sequence in base b is generalized in Definition 2. As usual, we write [x]b,m for the
coordinatewise m-digit truncation in base b of x ∈ [0, 1]

s .

Definition 2. Let b ≥ 2, s ≥ 1, and u ≥ 0 be integers and let e ∈ Ns . A sequence x0, x1, . . . of points in [0, 1]
s is a

(u, e, s)-sequence in base b if for all integers k ≥ 0 and m > u the points [xn]b,m with kbm
≤ n < (k + 1)bm form a

(u,m, e, s)-net in base b.

Remark 2. The case e = (1, . . . , 1) ∈ Ns yields the definition of a (t, s)-sequence in base b with t = u. It is obvious
that any (u, s)-sequence in base b is a (u, e, s)-sequence in base b for any choice of e ∈ Ns .
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