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a b s t r a c t

In this paper a solution method is presented for the coupled problem of elastic flat or space membranes

supported by elastic flexible cables. Both membrane and cable undergo large deflections. Starting from

the minimal surface the membrane is prestressed by imposed boundary displacements under the self-

weight. Then an iterative procedure is employed, which consists in solving the membrane and the cable

large deflection problems separately in each iteration step and checking the continuity of displace-

ments and forces between membrane and cable. The procedure is repeated until convergence is

achieved. Both membrane and cable problems are solved using the analog equation method (AEM). The

displacements as well as the stress resultants are evaluated at any point of the membrane and the cable

from the integral representations of the solution of the analog equations, which are used as mathe-

matical formulae. Example problems are presented, for both flat and space membranes, which illustrate

the method and demonstrate its efficiency and accuracy.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Structural membranes play an important role in the engineer-
ing field in our days. The lightness of the structure, the ability to
cover very large spans and the prefabrication facility are some of
their constructional advantages. They are separated into two
major categories, the air-supported membranes and the pre-
stressed membranes. The air-supported membrane derives its
structural integrity from the use of internal pressurized air to
inflate the structural fabric envelope, so that air is the main
support of the structure. However, any prestress can be applied to
the membrane of the second category by stretching it from its
edges (imposed boundary displacements) or by prestressed cables
which support it (cable-supported). The analysis of prestressed
membranes involves three steps [1] (i) form-finding, (i) prestress
under self-weight and (iii) in-service loading. There are various
techniques for the determination of the initial shape of the
membrane (e.g. [2–5]). In this investigation the initial form of
the membrane is determined by solving the minimal surface
problem using the method presented in Ref. [6].

In this paper an iterative solution scheme to the coupled
problem of elastic flat or space cable-supported membranes is
presented. Starting from the minimal surface the membrane is
prestressed by imposed boundary displacements on the bound-
ary. In first instance the cables are assumed undeformed (fixed
boundary) and the membrane problem is solved under self-
weight and prestress. Then the external loading is applied on

the deformed membrane and the membrane problem is solved
again with fixed boundary taking into account the prestress forces
from the previous step. The resulting reactions on the membrane
boundary are applied with reversed sign on the cable as external
loading and the cable problem is solved. Then the computed
displacements of the cable are used as imposed boundary dis-
placements for the membrane and the membrane problem is
solved again under the in-service loading. The procedure is
repeated until the displacement continuity conditions between
cable and membrane are satisfied.

Both membranes and cables exhibit nonlinear behavior due
to near zero flexural stiffness which renders them susceptible to
large deformations. That is, such structures adapt their shape
undergoing large deflections, in order to provide transverse
components of the stress resultants to equilibrate the load. In
the present analysis geometric nonlinearity is considered which
result in nonlinear kinematic relations, while the strains are still
small compared with the unity. A consequence of this is that the
resulting differential equilibrium equations are coupled and non-
linear. For flat membranes the problem is less difficult and
various solutions (analytical, approximate and numerical) are
available in the literature [7]. For space membranes the analytical
solutions are limited to axisymmetric membranes where the
problem is highly simplified as it becomes one-dimensional.
However, membranes of arbitrary shape encountered in realistic
engineering problems can be analyzed only by numerical meth-
ods [1,8–11]. Additional related references can be found in Ref. [1]
for space membranes and in Ref. [7] for flat. For the coupled
cable-membrane problem the FEM has been used by several
authors with various formulations. Haber et al. [12] have used a
computer-aided design program for the design of cable reinforced
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membranes structures based on a nonlinear analysis described in
Refs. [13,14]. Fujikake et al. [15] investigated the nonlinear
analysis of fabric tension cable structures using an updated
Lagrangian formulation to include the large displacements. Tab-
barrok and Qin [16] presented a complete procedure for both
form finding and load analysis of tension structures as a combi-
nation of membranes, cables and frames. All these investigators,
however, have presented their results in graphical form and
hence their accuracy cannot be validated.

In this investigation both membrane and cable problems are
solved using the analog equation method (AEM). According to this
method the three coupled nonlinear second order partial differ-
ential equations in terms of the displacements describing the
response of the membrane are replaced with three uncoupled
Poisson’s equations subjected to fictitious sources, unknown in
the first instance, under the same boundary conditions. Subse-
quently, the fictitious sources are established using a procedure
based on the BEM [1]. A similar procedure is applied for the
solution of the cable problem undergoing large displacements.
The three coupled nonlinear ordinary differential equations in
terms of the displacements describing the response of the cable
are replaced with three linear string equations under unknown
fictitious loads, which are subsequently established using the
integral equation method [17]. The final displacements due to the
in-service loading as well as the stress resultants are evaluated at
any point of the membrane and the cable from integral repre-
sentations of the solution of the substitute problems, which are
used as mathematical formulae. Example problems are presented,
for both flat and space membranes, which illustrate the method
and demonstrate its efficiency and accuracy.

Finally, the developed method can be combined with the
domain decomposition method for nonlinear membranes [9]
and offer an efficient computational tool for analyzing cable-
supported membranes of complicated geometry encountered in
realistic engineering tensile structures.

2. Problem statement and governing equations

2.1. The membrane problem

Consider a thin flexible elastic space (non-flat) membrane con-
sisting of homogeneous linearly elastic material, whose reference
configuration in its undeformed state is represented by the surface S,
bounded by the space curves C (see Fig. 1). The equation of the
surface S in Cartesian coordinates is z¼z(x,y). The surface S is
projected on the xy plane, creating the domain O, bounded by G,
the projection of C (see Fig. 1). The membrane, under the combined

action of the arbitrarily distributed load px, py and pz (acting along the
Cartesian axes), is moved in its deformed configuration which is
defined by the three displacement components u¼u(x,y), v¼v(x,y)
and w¼w(x,y) along the Cartesian axes x, y and z.

The equilibrium equations for the space membranes in terms
of the displacement components have been derived in Ref. [1] and
are given as
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in O, where Cij are position dependent coefficients characterizing
the stiffness of the membrane, given as
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and D¼Eh/(1�n2) is the stiffness of the membrane with h being
its thickness and E, n the material constants.

Note that for z,x¼z,y¼0 Eqs. (1) yield the equilibrium equations of
the flat membrane [7].

The pertinent boundary conditions of the problem are [1]

Tx ¼
~T x or u¼ ~u, ð3aÞ

Ty ¼
~T y or v¼ ~v, ð3bÞ
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on G. The tilde over a symbol designates prescribed quantity. Tx,
Ty are the components of the boundary tractions in Cartesian
coordinates given as

Tx ¼NxcosyþNxysiny, ð4aÞ

Ty ¼Nxy cosyþNy siny, y¼,x,n ð4bÞ
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Fig. 1. Surface S and its projection domain O.
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