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a b s t r a c t

Modularity density maximization is a clustering method that improves some issues
of the commonly used modularity maximization approach. Recently, some Mixed-
Integer Linear Programming (MILP) reformulations have been proposed in the
literature for the modularity density maximization problem, but they require as
input the solution of a set of auxiliary binary Non-Linear Programs (NLPs). These
can become computationally challenging when the size of the instances grows. In
this paper we propose and compare some explicit MILP reformulations of these
auxiliary binary NLPs, so that the modularity density maximization problem can
be completely expressed as MILP. The resolution time is reduced by a factor up to
two order of magnitude with respect to the one obtained with the binary NLPs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Given an undirected unweighted graph G = (V, E), where V is the vertex set and E is the edge set, cluster
analysis refers to finding a partition of V into disjoint groups called clusters (or communities) such that
vertices in the same cluster are densely connected to each other and less connected to those in other clusters.
This is a very important problem with applications in many fields, e.g., social networks [1], recommender
systems [2], biology and bioinformatics [3,4].

To date, there have been numerous methods proposed to identify clusters in a graph. Some methods do
not require a function to be optimized, for example the Girvan and Newman’s heuristic [1] where the edge
with highest ‘betweenness’ (i.e., number of shortest paths running along that edge) is iteratively removed.
Other approaches can be based on some rules (usually related to the number of neighbors of vertices inside
and outside their corresponding cluster) that each cluster must respect. In this category we can find the
strong and weak definition of Radicchi et al. [5], the semi-strong and extra-weak definitions of Hu et al. [6],
and the almost-strong definition of Cafieri et al. [7]. Alternatively, clustering can be expressed in terms of
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an objective function to optimize, and this is interesting from a mathematical programming point of view.
One of the commonly used objective functions is modularity, which is defined as the fraction of edges within
clusters minus the expected fraction of such edges in a random graph with the same degree distribution. It
is to be noted that the problem of clustering based on maximization of the modularity function is NP-hard
[1,8,9].

Notwithstanding its NP-hardness, clustering solutions arising from modularity maximization also present
some practical issues, in particular, resolution limit and degeneracy. The former refers to the possibility of
small clusters being merged with other clusters and thus not detected [10]. The latter occurs when there are
several high quality local optima and a global optimum cannot be easily found [11]. In order to overcome the
resolution limit issue associated with modularity maximization, an alternative clustering measure, modularity
density, was proposed in [12]. The main difference with respect to modularity is that modularity density
takes into account the size of the clusters. More precisely, according to [13] the modularity density D can
be defined as:

D =
∑
c∈C

(
2mc − m̄c

nc

)
, (1)

where C is the set of clusters (whose cardinality |C| is not know in advance), mc is the number of edges
having both end vertices inside cluster c (inner edges), m̄c is the number of edges having one end vertex in
c and the other one outside c (cut edges), and nc is the number of vertices inside cluster c (i.e., the size of
the cluster).

Unfortunately, the optimization problem based on maximizing modularity density, termed as the
Modularity Density Maximization (MDM) problem, is not easy to solve. More precisely, MDM was formulated
as a binary Non-Linear Programming (0–1 NLP) problem in [12], and in general non-linear, non-convex
problems having integer variables are solved by means of MINLP (Mixed-Integer Non-Linear Programming)
solvers, which may converge slowly to the optimal solution even for small size instances. Nevertheless, as
pointed out in [14,15], it is still unclear if MDM is NP-hard, since the proof provided in [12] is wrong.

In [13] some Mixed-Integer Linear Programming (MILP) reformulations of MDM were proposed. However,
to implement these MILP reformulations, the authors require the solution of a set of auxiliary 0–1 NLP
problems. Albeit these auxiliary 0–1 NLPs are easier to solve than the MDM problem presented in [12], they
can still be quite challenging when the size of the instances is large. Hence, it is important to find efficient
ways to solve them. In this paper, we derive several exact MILP reformulations of the above-mentioned
auxiliary NLP problems, thus obtaining complete MILP formulations of MDM. To do so, we employ some
reformulation techniques, e.g., linearization of bilinear terms, expansion of integers in power of two, and
reformulation of fractional programs. Finally, we perform numerical studies to show that the proposed
MILP reformulations are more computationally efficient, especially when problem instances scale up.

The rest of the paper is organized as follows: In Section 2 we introduce the techniques employed later to
linearize the non-linear problems. In Section 3 we give a formal problem statement of the MDM and the
related auxiliary 0–1 NLPs. The MILP reformulations of these problems are then presented in Sections 4
and 5. In Section 6 we also prove that the optimal solutions of the MILPs and those obtained in [13] by
solving the continuous relaxation of the 0–1 NLPs are the same, i.e., we can discard the integrality constraint
from the 0–1 NLPs and the solution is still integral. Computational results showing the efficiency of our new
models are reported in Section 7. Finally, conclusions are drawn in Section 8.

2. Preliminaries: reformulation techniques

In this section we introduce the techniques that will be employed later to derive the MILP reformulations
of the 0–1 NLPs.
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