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a b s t r a c t

In this paper we are interested in the separation problem of the so-called rounded
capacity inequalities which are involved in the two-index formulation of the CVRP
(Capacitated Vehicle Routing Problem) polytope. In a recent work (Diarrassouba,
2015, [1]), we have investigated the theoretical complexity of that problem in
the general case. Several authors have devised heuristic separation algorithms for
rounded capacity inequalities for solving the CVRP. In this paper, we investigate the
conditions under which this separation problem can be solved in polynomial time,
and this, in the context of the CVRP or for solving other combinatorial optimization
problems in which rounded capacity inequalities are involved. We present four cases
in which they can be separated in polynomial time and reduce the problem to O(n2)
maximum flow computations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Capacitated Vehicle Routing Problem (CVRP) is defined by an undirected complete graph G =
(V,E), a special node s ∈ V , called the depot, and V \ {s} the set of clients. Each client u ∈ V \ {s} is
given a positive demand du. To satisfy the demands, we use a fleet of identical vehicles, each of capacity
Q ≥ 2. Every edge {u, v} of the graph is assigned a positive routing cost cuv. Each client must be served by
a single vehicle and no vehicle can serve a set of clients whose total demand exceeds its capacity. Also, each
vehicle must leave and return back to the depot. The problem is to find a set of vehicles and a routing for
each vehicle such that all the clients are served and the total routing cost is minimum. The client demands
du, u ∈ V \ {s}, and the vehicle capacity are assumed, w.l.o.g, to be positive integers. We also assume that
du ≤ Q, for all u ∈ V \ {s}.

The CVRP is known to be strongly NP-hard, since it generalizes the Traveling Salesman Problem and
has many practical applications, including network design, routing and scheduling problems. The problem,
and its variants, have received a lot of attention for several decades and still remain subject to extensive
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researches. Several formulations have been proposed for the problem (see for instance [2–6]). In this paper,
we are interested in the two-index formulation of the CVRP and the associated capacity inequalities which
are defined below.

Given a node set W ( V , the cut induced by W in the graph G is denoted by δ(W ) and is the set of
edges of G having one node in W and the other in V \W . When W = {u}, we denote by δ(u) the cut
induced by W . Also, for a node set W ⊆ V \{s}, we let BP (W ) be the minimum number of vehicles needed
to serve the client set W . Namely, BP (W ) is the optimal solution of a Bin Packing Problem where bins are
of capacity Q, object set is W and each object u ∈W is of size du.

The CVRP can be formulated by the following integer linear program (see [3,5,6]). Let x ∈ RE be an
integer vector, where xuv is the number of times the edge {u, v} ∈ E is used by a vehicle in a solution of
the CVRP. For every edge set F ⊆ E, we let x(F ) =


e∈F xe. The two-index formulation for the CVRP is

given by

min

e∈E
cexe

s.t.
x(δ(u)) = 2, for all u ∈ V \ {s}, (1.1)
x(δ(W )) ≥ 2BP (W ), for all W ⊆ V \ {s}, |W | ≥ 2, (1.2)
0 ≤ xuv ≤ 1, for all u, v ∈ V \ {s}, (1.3)
0 ≤ xsu ≤ 2, for all u ∈ V \ {s}, (1.4)
xuv ∈ {0, 1}, for all u, v ∈ V \ {s}, (1.5)
xsu ∈ {0, 1, 2}, for all u ∈ V \ {s}. (1.6)

Constraints (1.1) are the degree constraints and indicate that every client is served exactly once.
Inequalities (1.2) are the so-called capacity inequalities. They ensure that the total demand of a set of
clients does not exceed the capacity of the vehicle used to serve these clients. They also ensure that the
routes of the vehicles are connected. The polytope described by constraints (1.1)–(1.6) is the so-called CVRP
polytope, and is denoted by CVRP(G, d,Q). We also denote by CVRP′(G, d,Q) the polytope defined by the
linear relaxation of the above formulation.

Some variants of the CVRP impose that the number of vehicles used in a solution is bounded by a positive
integer k. In this case, the constraint

x(δ(s)) ≤ 2k, (1.7)

is added to the formulation of the problem. In some other variants, it is required that the number of vehicles
used in a solution is exactly k. The inequality in (1.7) hence is replaced by an equality.

In [7], Archetti et al. investigated a variant of the CVRP, called Skip Delivery Problem (SDP for short), in
which the vehicle capacity is Q = 2 and the demand of the clients may be greater than the vehicle capacity.
They [7] showed that the SDP can be solved in polynomial time. Since the CVRP when Q = 2 is a particular
case of the SDP, the CVRP can be solved in polynomial time in this particular case.

Several authors devised Branch-and-Cut algorithms based on the two-index formulation to solve the
CVRP in the general case (see for instance [8,9,5,6]). Since in this formulation, inequalities (1.2) are
exponential in number, one has to address the separation problem associated with CVRP′(G, d,Q), in
order to solve the linear relaxation of the CVRP using a cutting plane method. Recall that the separation
problem associated with a polyhedron P is to say if a given solution x belongs to P or not, and if x ̸∈ P ,
then exhibit an inequality ax ≥ α valid for P and violated by x. We also define the separation problem
associated with a solution x and a family F of inequalities, which consists in saying if x satisfies or not all
the inequalities of F , and if not, exhibit at least one inequality of F which is violated by x. An algorithm
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