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a b s t r a c t

In this paper we consider the Wafer-to-Wafer Integration problem. A wafer can
be seen as a p-dimensional binary vector. The input of this problem is described
by m multisets (called “lots”), where each multiset contains n wafers. The output
of the problem is a set of n disjoint stacks, where a stack is a set of m wafers
(one wafer from each lot). To each stack we associate a p-dimensional binary vector
corresponding to the bit-wise AND operation of the wafers of the stack. The objective
is to maximize the total number of “1” in the n stacks. We provide m1−ϵ and
p1−ϵ non-approximability results even for n = 2, f(n) non-approximability for any
polynomial-time computable function f , as well as a p

r
-approximation algorithm for

any constant r. Finally, we show that the problem is FPT when parameterized by p,
and we use this FPT algorithm to improve the running time of the p

r
-approximation

algorithm.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Problem definition

In this paper we consider Wafer-to-Wafer Integration problems. In these problems, we are given m
multisets V 1, . . . , V m, where each set V i contains n binary p-dimensional vectors. For any j ∈ [n],1 and
any i ∈ [m], we denote by vij the jth vector of the multiset V i, and for any l ∈ [p] we denote by vij [l] ∈ {0, 1}
the lth component of vij .

Let us now define the output. A stack s = (vs1, . . . , vsm) is an m-tuple of vectors such that vsi ∈ V i, for
any i ∈ [m]. An output of the problem is a set S = {s1, . . . , sn} of n stacks such that for any i and j, the
vector vij is contained exactly in one stack. An example of input and output is depicted in Fig. 1.
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Fig. 1. Example of max


1 instance with m = 3, n = 4, p = 6 and of a feasible solution S of profit fΣ1(S) = 7.

These problems are motivated by an application in IC manufacturing in semiconductor industry, see [1]
for more details about this application. A wafer can be seen as a string of bad dies (0) and good dies (1).
Integrating two wafers corresponds to superimposing the two corresponding strings. In this operation, a
position in the merged string is only ‘good’ when the two corresponding dies are good, otherwise it is ‘bad’.
The objective of Wafer-to-Wafer Integration is to form n stacks, while maximizing the overall quality of the
stacks (depending on the objective function).

Let us now define several objective functions, and the corresponding optimization problems. We consider
the operator ∧ which maps two p-dimensional vectors to another one by performing the logical and operation
on each component of entry vectors. More formally, given two p-dimensional vectors u and v, we define
u ∧ v = (u[1] ∧ v [1], u[2] ∧ v [2], . . . , u[p] ∧ v [p]). We associate to any stack s = (vs1, . . . , vsm) a binary
p-dimensional vector vs =

m
i=1 v

s
i . Then, the profit of a stack s is given by c (vs), where c (v) =

p
l=1 v [l].

Roughly speaking, the profit of a stack is the number of good bits in the representative vector of this stack,
where a good bit (in position l) survives if and only if all the vectors of the stack have a good bit in position l.

We are now ready to define the two following optimization problems:

Set of problems 1 max


1 and min


0
Input m multisets of n binary p-dimensional vectors
Output a set S = {s1, s2, . . . , sn} of n disjoint stacks

Objective
functions

max


1: maximize f
1
(S) =

n

j=1
c

vsj


, the total number of good bits

min


0: minimize f
0
(S) = np−

n

j=1
c

vsj


, the total number of bad bits

Instances of these problems will be denoted by I[m,n, p]. The notation f(S) (instead of f 0(S),
f 1(S), . . .) will be used when the context is non ambiguous. Note that we use multisets to modelize
the sets of wafers since two different wafers can share the same representative vector. In the following, we
refer to multisets as sets and consider two copies of a same vector as two distinct elements.

1.2. Related work

In this paper we consider results in the framework of approximation and fixed parameter tractability
theory. We only briefly recall the definitions here and refer the reader to [2,3] for more information. For
any ρ > 1, a ρ-approximation algorithm A (for a maximization problem) is such that for any instance I,
A(I) ≥ Opt(I)ρ , where Opt(I) denotes the optimal value. The input of a parameterized (decision) problem Π
is a couple (X,κ), where X ⊆ Σ∗ is a classical decision problem, and κ : Σ∗ −→ N is a parameterization.
Deciding Π requires to determine for any instance I ∈ Σ∗ if I ∈ X. Finally, we say that an algorithm A
decides Π in FPT time (or that Π is FPT parameterized by κ) if and only if there exist a computable
function f and a constant c such that for any I, A(I) runs in O(f(κ(I))|I|c).
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