On complexities of minus domination

Luérbio Faria ${ }^{\text {a }}$, Wing-Kai Hon ${ }^{\text {b }}$, Ton Kloks ${ }^{\text {c }}$, Hsiang-Hsuan Liu ${ }^{\text {b }}$, Tao-Ming Wang ${ }^{\text {d }}$, Yue-Li Wang ${ }^{\text {e,* }}$
${ }^{\text {a }}$ Instituto de Matemática e Estatística, Universidade do Estado do Rio de Janeiro, Brazil
${ }^{\mathrm{b}}$ Department of Computer Science, National Tsing Hua University, Taiwan
${ }^{\text {c }}$ Institute of Information and Decision Sciences, National Taipei University of Business, Taiwan
${ }^{\text {d }}$ Department of Applied Mathematics, Tunghai University, Taichung, Taiwan
${ }^{\mathrm{e}}$ Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan

A R T I C L E I N F O

Article history:

Available online 11 May 2016

Keywords:

Domination
Minus domination
Fixed-parameter tractable
d-degenerate graph
Chordal graph

Abstract

A function $f: V \rightarrow\{-1,0,1\}$ is a minus-domination function of a graph $G=(V, E)$ if the values over the vertices in each closed neighborhood sum to a positive number. The weight of f is the sum of $f(x)$ over all vertices $x \in V$. In the minus-domination problem, one tries to minimize the weight of a minus-domination function. In this paper, we show that (1) the minus-domination problem is fixed-parameter tractable for d-degenerate graphs when parameterized by the size of the minus-dominating set and by d, where the size of a minus domination is the number of vertices that are assigned $1,(2)$ the minus-domination problem is polynomial for graphs of bounded rankwidth and for strongly chordal graphs, (3) it is $N P$-complete for split graphs, and (4) there is no fixed-parameter algorithm for minus-domination.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The area of domination problems is affected by the recent fixed-parameter investigations (see, e.g., [1,2]). Let $G=(V, E)$ be a graph and let $f: V \rightarrow S$ be a function that assigns some integer from $S \subseteq \mathbb{Z}$ to every vertex of G. For a subset $W \subseteq V$ we write

$$
f(W)=\sum_{x \in W} f(x) .
$$

The function f is a domination function if for every vertex $x, f(N[x])>0$, where $N[x]=\{x\} \cup N(x)$ is the closed neighborhood of x. The weight of f is defined as the value $f(V)$.

[^0]

Fig. 1. A minus-domination function with negative weight.

In this manner, the ordinary domination problem is described by a domination function that assigns a value of $\{0,1\}$ to each element of V. A signed domination function assigns a value of $\{-1,1\}$ to each vertex x. The minimal weights over all dominating and signed dominating functions are denoted by $\gamma(G)$ and $\gamma_{s}(G)$, respectively. In this paper we look at the minus-domination problem.

Definition 1. Let $G=(V, E)$ be a graph. A function $f: V \rightarrow\{-1,0,1\}$ is a minus-domination function if $f(N[x])>0$ for every vertex x.

In the minus-domination problem one tries to minimize the weight of a minus-domination function. The minimal weight over all minus-domination functions is denoted as $\gamma^{-}(G)$. Notice that the weight may be negative. For example, consider a K_{n} with $n \geqslant 4$ and add one new vertex for every edge, adjacent to the endpoints of that edge. Assign a value 1 to every vertex of the K_{n} and assign a value -1 to each of the other vertices. This is a valid and optimal minus-domination function and its weight is $n-\binom{n}{2}$ (see Fig. 1 for an illustration).

The problem to determine the value of $\gamma^{-}(G)$ is $N P$-complete, even when restricted to bipartite graphs, chordal graphs and planar graphs with maximal degree four [3,4]. Damaschke shows that, unless $P=N P$, the value of γ^{-}cannot be approximated in polynomial time within a factor $1+\epsilon$, for some $\epsilon>0$, not even for graphs with maximum degree at most four [3, Theorem 7]. Sharp bounds for the minimum weight are obtained for some classes of graphs, e.g., graphs with $\Delta(G) \leqslant 3$ and 4 [3], trees [5], bipartite graphs [6,7], complete bipartite graphs [8], multipartite graphs [9], cubic graphs [10-12], regular graphs [13], and general graphs [14].

There are very few algorithmic results for solving the minus domination problem on some special graphs. As far as we know, there are only linear-time algorithms for solving the minus domination problem on trees [4], chain interval graphs [15], and strongly chordal graphs [16]. This motivates us to investigate the complexity of the minus-domination problem for some classes of perfect graphs including cographs, distancehereditary graphs, strongly chordal graphs and split graphs. Moreover, the minus-domination problem is polynomial for graphs of bounded rankwidth and fixed-parameter tractable for d-degenerate graphs when parameterized by the size of the minus-dominating set and by d, where the size of a minus domination is the number of vertices that are assigned 1.

2. d-Degenerate graphs

Let $G=(V, E)$ be a graph and let $f: V \rightarrow S$ be a domination function. Following Zheng et al. [17], we define the size of f as the number of vertices $x \in V$ with $f(x)>0$. We denote the size of a minus-dominating

https://daneshyari.com/en/article/5128291

Download Persian Version:
https://daneshyari.com/article/5128291

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: ylwang@cs.ntust.edu.tw (Y.-L. Wang).

